Abstract:Accurate estimation of the contrast transfer function (CTF) is critical for a near-atomic resolution cryo electron microscopy (cryoEM) reconstruction. Here, I present a GPU-accelerated computer program, Gctf, for accurate and robust, real-time CTF determination. Similar to alternative programs, the main target of Gctf is to maximize the cross-correlation of a simulated CTF with the power spectra of observed micrographs after background reduction. However, novel approaches in Gctf improve both speed and accuracy. In addition to GPU acceleration, a fast '1-dimensional search plus 2-dimensional refinement (1S2R)' procedure significantly speeds up Gctf. Based on the global CTF determination, the local defocus for each particle and for single frames of movies is accurately refined, which improves CTF parameters of all particles for subsequent image processing.Novel diagnosis method using equiphase averaging(EFA) and self-consistency verification procedures have also been implemented in the program for practical use, especially for aims of nearatomic reconstruction. Gctf is an independent program and the outputs can be easily imported into other cryoEM software such as Relion and Frealign. The results from several representative datasets are shown and discussed in this paper.
Detecting communities or clusters in a real-world, networked system is of considerable interest in various fields such as sociology, biology, physics, engineering science, and interdisciplinary subjects, with significant efforts devoted in recent years. Many existing algorithms are only designed to identify the composition of communities, but not the structures. Whereas we believe that the local structures of communities can also shed important light on their detection. In this work, we develop a simple yet effective approach that simultaneously uncovers communities and their centers. The idea is based on the premise that organization of a community generally can be viewed as a high-density node surrounded by neighbors with lower densities, and community centers reside far apart from each other. We propose so-called “community centrality” to quantify likelihood of a node being the community centers in such a landscape, and then propagate multiple, significant center likelihood throughout the network via a diffusion process. Our approach is an efficient linear algorithm, and has demonstrated superior performance on a wide spectrum of synthetic and real world networks especially those with sparse connections amongst the community centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.