The value of local ecological knowledge (LEK) to conservation is increasingly recognised, but LEK is being rapidly lost as indigenous livelihoods change. Biodiversity loss is also a driver of the loss of LEK, but quantitative study is lacking. In our study landscape in SW China, a large proportion of species have been extirpated. Hence, we were interested to understand whether species extirpation might have led to an erosion of LEK and the implications this might have for conservation. So we investigated peoples' ability to name a selection of birds and mammals in their local language from pictures. Age was correlated to frequency of forest visits as a teenager and is likely to be closely correlated to other known drivers of the loss of LEK, such as declining forest dependence. We found men were better at identifying birds overall and that older people were better able to identify birds to the species as compared to group levels (approximately equivalent to genus). The effect of age was also stronger among women. However, after controlling for these factors, species abundance was by far the most important parameter in determining peoples' ability to name birds. People were unable to name any locally extirpated birds at the species level. However, contrary to expectations, people were better able to identify extirpated mammals at the species level than extant ones. However, extirpated mammals tend to be more charismatic species and several respondents indicated they were only familiar with them through TV documentaries. Younger people today cannot experience the sights and sounds of forest animals that their parents grew up with and, consequently, knowledge of these species is passing from cultural memory. We suggest that engaging older members of the community and linking the preservation of LEK to biodiversity conservation may help generate support for conservation.
This study involving 5 cohorts (n=1557) identifies NOTCH mutation, especially deleterious NOTCH mutation (del-NOTCH mut), as novel, frequent determinant of sensitivity to immune checkpoint inhibitor (ICI) in EGFR/ALK WT NSCLC. ICI, compared to chemotherapy, conferred limited benefit in the NOTCH-wild-type patients, but remarkably prolonged PFS and OS in the patients harboring del-NOTCH mut. These results indicate the potential that del-NOTCH mut might impact on the treatment choice (ICI vs. chemotherapy) in advanced EGFR/ALK WT NSCLC. More importantly, del-NOTCH mut downregulates NOTCH signaling and is correlated with better ICI efficacy, which unravels a possibility that the monoclonal antibodies or small chemicals aiming NOTCH members or their ligands might enhance the response to ICI. This inference might lead future research to explore the efficacy of adding NOTCH inhibitor to ICI regimen in NSCLC, for the optimization of ICI treatment in clinical practice.
Plant diversity surely determines arthropod diversity, but only moderate correlations between arthropod and plant species richness had been observed until Basset et al. (2012, Science 338: 1481-1484) finally undertook an unprecedentedly comprehensive sampling of a tropical forest and demonstrated that plant species richness could indeed accurately predict arthropod species richness. We now require a high-throughput pipeline to operationalize this result so that we can (1) test competing explanations for tropical arthropod megadiversity, (2) improve estimates of global eukaryotic species diversity, and (3) use plant and arthropod communities as efficient proxies for each other, thus improving the efficiency of conservation planning and of detecting forest degradation and recovery. We therefore applied metabarcoding to Malaisetrap samples across two tropical landscapes in China. We demonstrate that plant species richness can accurately predict arthropod (mostly insect) species richness and that plant and insect community compositions are highly correlated, even in landscapes that are large, heterogeneous, and anthropogenically modified. Finally, we review how metabarcoding makes feasible highly replicated tests of the major competing explanations for tropical megadiversity.3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.