Rapid and accurate damage detection of magnesium-aluminum alloy, which is an important material for automotive lightweight, is of great significance. Pulsed eddy current (PEC) is an effective electromagnetic nondestructive testing and evaluation (NDT&E) technique for metal materials. Metal loss evaluation and imaging are one of the most important steps in quality control and maintenance of key components of automobiles. A PEC method based on a rectangular excitation coil and an axial parallel pickup coil is proposed and investigated for the purpose of metal loss evaluation and imaging. Metal loss type of defects with different sections is designed and detected using line scanning technique and C-scan imaging in two scanning directions. Experimental results have illustrated that metal loss depth can be estimated effectively by the peak amplitude of PEC A-scan response. Then, the quantification information of metal loss depth is preliminarily obtained based on the linear fitting equation. Consequently, metal loss evaluation is realized by line scanning peak waves and C-scan pseudo 3D images. At last, the sensitivity comparison shows that the metal loss can be detected in both directions. The proposed method is an effective approach to evaluate the image surface-breaking metal loss in automotive lightweight alloy materials.
The health detection of lithium ion batteries plays an important role in improving the safety and reliability of lithium ion batteries. When lithium ion batteries are in operation, the generation of bubbles, the expansion of electrodes, and the formation of electrode cracks will produce stress waves, which can be collected and analyzed by acoustic emission technology. By building an acoustic emission measurement platform of lithium ion batteries and setting up a cycle experiment of lithium ion batteries, the stress wave signals of lithium ion batteries were analyzed, and two kinds of stress wave signals which could characterize the health of lithium ion batteries were obtained: a continuous acoustic emission signal and a pulse type acoustic emission signal. The experimental results showed that during the discharge process, the amplitude of the continuous acoustic emission signal decreased with the increase of the cycle times of batteries, which could be used to characterize performance degradation; there were more pulse type acoustic emission signals in the first cycle of batteries, less in the small number of cycles, and slowly increased in the large number of cycles, which was in line with the bathtub curve and could be used for aging monitoring. The research on the health of lithium ion batteries by acoustic emission technology provides a new idea and method for detecting the health lithium ion batteries.
In this paper, we investigate pulsed eddy current (PEC) testing based on a rectangular sensor for the purpose of defect shape mapping in electric vehicle lightweight alloy material. Different dimensional defects were machined on the 3003 aluminum alloy and detected using the A-scan technique and C-scan imaging in two scanning directions. The experiment results indicated that defect plane shape could be preliminarily obtained and length and width could be estimated based upon C-scan contour images. Consequently, the comparison of results between the two directions showed that the C-scan identification in the direction of magnetic flux was better than in the direction of the exciting current. Finally, subsurface defects and irregular defects were detected to verify the performance of shape mapping as a recommended approach. The conclusion drawn indicates that the proposed method, based on PEC rectangular sensors, is an effective approach in reconstructing a defect’s shape.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.