There are a number of symptoms, both neurological and behavioral, associated with a single episode of r mild traumatic brain injury (mTBI). Neuropsychological testing and conventional neuroimaging techniques are not sufficiently sensitive to detect these changes, which adds to the complexity and difficulty in relating symptoms from mTBI to their underlying structural or functional deficits. With the inability of traditional brain imaging techniques to properly assess the severity of brain damage induced by mTBI, there is hope that more advanced neuroimaging applications will be more sensitive, as well as specific, in accurately assessing mTBI. In this study, we used resting state functional magnetic resonance imaging to evaluate the default mode network (DMN) in the subacute phase of mTBI. Fourteen concussed student-athletes who were asymptomatic based upon clinical symptoms resolution and clearance for aerobic exercise by medical professionals were scanned using resting state functional magnetic resonance imaging. Nine additional asymptomatic yet not medically cleared athletes were recruited to investigate the effect of a single episode of mTBI versus multiple mTBIs on the resting state DMN. In concussed individuals the resting state DMN showed a reduced number of connections and strength of connections in the posterior cingulate and lateral parietal cortices. An increased number of connections and strength of connections was seen in the medial prefrontal cortex. Connections between the left dorso-lateral prefrontal cortex and left lateral parietal cortex showed a significant reduction in magnitude as the number of concussions increased. Regression analysis also indicated an overall loss of connectivity as the number of mTBI episodes increased. Our findings indicate that alterations in the brain resting state default mode network in the subacute phase of injury may be of use clinically in assessing the severity of mTBI and offering some insight into the pathophysiology of the disorder.
Memory problems are one of the most common symptoms of sport-related mild traumatic brain injury (MTBI), known as concussion. Surprisingly, little research has examined spatial memory in concussed athletes given its importance in athletic environments. Here, we combine functional magnetic resonance imaging (fMRI) with a virtual reality (VR) paradigm designed to investigate the possibility of residual functional deficits in recently concussed but asymptomatic individuals. Specifically, we report performance of spatial memory navigation tasks in a VR environment and fMRI data in 15 athletes suffering from MTBI and 15 neurologically normal, athletically active age matched controls. No differences in performance were observed between these two groups of subjects in terms of success rate (94 and 92%) and time to complete the spatial memory navigation tasks (mean = 19.5 and 19.7 s). Whole brain analysis revealed that similar brain activation patterns were observed during both encoding and retrieval among the groups. However, concussed athletes showed larger cortical networks with additional increases in activity outside of the shared region of interest (ROI) during encoding. Quantitative analysis of blood oxygen level dependent (BOLD) signal revealed that concussed individuals had a significantly larger cluster size during encoding at parietal cortex, right dorsolateral prefrontal cortex, and right hippocampus. In addition, there was a NIH Public AccessAuthor Manuscript Exp Brain Res. Author manuscript; available in PMC 2011 April 1. NIH-PA Author ManuscriptNIH-PA Author Manuscript NIH-PA Author Manuscript significantly larger BOLD signal percent change at the right hippocampus. Neither cluster size nor BOLD signal percent change at shared ROIs was different between groups during retrieval. These major findings are discussed with respect to current hypotheses regarding the neural mechanism responsible for alteration of brain functions in a clinical setting.
There is still controversy in the literature whether a single episode of mild traumatic brain injury (MTBI) results in short-term functional and/or structural deficits as well as any induced long-term residual effects. With the inability of traditional structural brain imaging techniques to accurately diagnosis MTBI, there is hope that more advanced applications like functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI) will be more specific in diagnosing MTBI. In this study, 15 subjects who have recently suffered from sport-related MTBI and 15 age-matched normal controls underwent both fMRI and DTI to investigate the possibility of traumatic axonal injury associated with functional deficits in recently concussed but asymptomatic individuals. There are several findings of interest. First, MTBI subjects had a more disperse brain activation pattern with additional increases in activity outside of the shared regions of interest (ROIs) as revealed by FMRI blood oxygen level–dependent (BOLD) signals. The MTBI group had additional activation in the left dorsal-lateral prefrontal cortex during encoding phase of spatial navigation working memory task that was not observed in normal controls. Second, neither whole-brain analysis nor ROI analysis showed significant alteration of white matter (WM) integrity in MTBI subjects as evidenced by fractional anisotropy FA (DTI) data. It should be noted, however, there was a larger variability of fractional anisotropy (FA) in the genu, and body of the corpus callosum in MTB subjects. Moreover, we observed decreased diffusivity as evidenced by apparent diffusion coefficient (ADC) at both left and right dorsolateral prefrontal cortex (DL-PFC) in MTBI subjects (P < 0.001). There was also a positive correlation (P < 0.05) between ADC and % change of fMRI BOLD signals at DL-PFC in MTBI subjects, but not in normal controls. Despite these differences we conclude that overall, no consistent findings across advanced brain imaging techniques (fMRI and DTI) were observed. Whether the lack of consistency across research techniques (fMRI & DTI) is due to time frame of scanning, unique nature of MTBI and/or technological issues involved in FA and Apparent Diffusion Coefficient (ADC) quantification is yet to be determined.
Concussion, the most common form of traumatic brain injury, proves to be increasingly complex and not mild in nature as its synonymous term mild traumatic brain injury (mTBI) would imply. Despite the increasing occurrence and prevalence of mTBI there is no universally accepted definition and conventional brain imaging techniques lack the sensitivity to detect subtle changes it causes. Moreover, clinical management of sports induced mild traumatic brain injury has not changed much over the past decade. Advances in neuroimaging that include electroencephalography (EEG), functional magnetic resonance imaging (fMRI), resting-state functional connectivity, diffusion tensor imaging (DTI) and magnetic resonance spectroscopy (MRS) offer promise in aiding research into understanding the complexities and nuances of mTBI which may ultimately influence clinical management of the condition. In this paper the authors review the major findings from these advanced neuroimaging methods along with current controversy within this field of research. As mTBI is frequently associated with youth and sports injury this review focuses on sports-related mTBI in the younger population.
In the pursuit to better understand the neural underpinnings of oculomotor deficits following concussion we performed a battery of oculomotor tests while performing simultaneous functional magnetic resonance imaging (fMRI). Based on the increasing evidence that concussion can disrupt multiple brain functional networks, including the oculomotor control networks, a series of classic saccadic and smooth pursuit tasks were implemented. Nine concussed athletes were tested within seven days of injury along with nine age and sex matched healthy normal volunteers. Both behavioral and fMRI data revealed differential results between the concussed and normal volunteer groups. Concussed subjects displayed longer latency time in the saccadic tasks, worse position errors, and fewer numbers of self-paced saccades compared to normal volunteer subjects. Furthermore, the concussed group showed recruitment of additional brain regions and larger activation sites as evidenced by fMRI. As a potential diagnostic and management tool for concussion, oculomotor testing shows promise, and here we try to understand the reasons for this disrupted performance with the aide of advanced neuroimaging tools.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.