Traceable multi-authority ciphertext-policy attribute-based encryption (CP-ABE) is a practical encryption method that can achieve user traceability and fine-grained access control simultaneously. However, existing traceable multi-authority CP-ABE schemes have two main limitations that prevent them from practical applications. First, these schemes only support small universe: the attributes must be fixed at system setup and the attribute space is restricted to polynomial size. Second, the schemes are either less expressive (the access policy is limited to "AND gates with wildcard") or inefficient (the system is constructed in composite order bilinear groups). To address these limitations, we present a traceable large universe multi-authority CP-ABE scheme, and further prove that it is statically secure in the random oracle model. Compared with existing traceable multi-authority CP-ABE schemes, the proposed scheme has four advantages. First, the attributes are not fixed at setup and the attribute universe is not bounded to polynomial size. Second, the ciphertext polices can be expressed as any monotone access structures. Third, the proposed scheme is constructed in prime order groups, which makes this scheme more efficient than those in composite order bilinear groups. Finally, the proposed scheme requires neither a central authority nor an identity table for tracing.
Efficient large-universe multi-authority ciphertext-policy attribute-based encryption with white-box traceability SCIENCE CHINA Information Sciences 61, 032102 (2018); Adaptively secure ciphertext-policy attribute-based encryption with dynamic policy updating SCIENCE CHINA Information Sciences 59, 042701 (2016); Accountable authority key policy attribute-based encryption SCIENCE CHINA Information Sciences 55, 1631 (2012); Ciphertext-policy attribute-based proxy re-encryption via constrained PRFs SCIENCE CHINA Information Sciences 64, 169301 (2021); Hidden policy ciphertext-policy attribute-based encryption with keyword search against keyword guessing attack SCIENCE CHINA Information Sciences 60, 052105 (2017);. LETTER. SCIENCE CHINA Information Sciences
With the rapid development of cloud computing and Internet of Things (IoT) technology, it is becoming increasingly popular for source-limited devices to outsource the massive IoT data to the cloud. How to protect data security and user privacy is an important challenge in the cloud-assisted IoT environment. Attribute-based keyword search (ABKS) has been regarded as a promising solution to ensure data confidentiality and fine-grained search control for cloud-assisted IoT. However, due to the fact that multiple users may have the same retrieval permission in ABKS, malicious users may sell their private keys on the Internet without fear of being caught. In addition, most of existing ABKS schemes do not protect the access policy which may contain privacy information. Towards this end, we present a privacy-preserving ABKS that simultaneously supports policy hiding, malicious user traceability, and revocation. Formal security analysis shows that our scheme can not only guarantee the confidentiality of keywords and access policies but also realize the traceability of malicious users. Furthermore, we provide another more efficient construction for public tracing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.