A rapid screening method for pesticides has been developed to promote more efficient processing of produce entering the United States. Foam swabs were used to recover a multiclass mixture of 132 pesticides from the surfaces of grapes, apples, and oranges. The swabs were analyzed using direct analysis in real time (DART) ionization coupled with a high-resolution Exactive Orbitrap™ mass spectrometer. By using a DART helium temperature gradient from 100-350°C over 3 min, a minimal separation of analytes based on volatility differences was achieved. This, combined with the Exactive's mass resolution of 100,00, allowed the chromatographic step, along with the typical compositing and extraction steps associated with gas chromatography/mass spectrometry (GC/MS) or liquid chromatography/mass spectrometry (LC/MS) approaches, to be eliminated. Detection of 86% of the analytes present was consistently achieved at levels of 2 ng/g (per each apple or orange) and 10 ng/g (per grape). A resolution study was conducted with four pairs of isobaric compounds analyzed at a mass resolution of 100 000. Baseline separation was achieved with analyte ions differing in mass by 25 ppm and analyte ions with a mass difference of 10 ppm were partially resolved. In addition, field samples that had undergone traditional sample preparation using QuEChERS (quick, easy, cheap, rugged, and safe) were analyzed using both LC/MS and DART-MS and the results from the two techniques were found to be comparable in terms of identification of the pesticides present. The use of swabs greatly increased sample throughput by reducing sample preparation and analysis time.
The existence of contaminants in food poses a serious threat to human health. In recent years, aptamer sensors (aptasensors) have been developed rapidly for the detection of food contaminants because of their high specificity, design flexibility, and high efficiency. However, the development of high-throughput, highly sensitive, on-site, and cost-effective methods for simultaneous detection of food contaminants is still restricted due to multiple signal overlap or mutual interference and cross-reaction between different analytes with similar molecular structures. To overcome these problems, this Review summarizes some effective strategies from the articles published in recent years about multiplexed aptasensors for the simultaneous detection of food contaminants. This work focuses on the application of multiplexed aptasensors to simultaneously detect antibiotics, pathogens, and mycotoxins in food. These aptasensors mainly contain fluorescent aptasensors, electrochemical aptasensors, surface-enhanced Raman scattering-based aptasensors, microfluidic chip aptasensors, and paper-based multiplexed aptasensors. In addition, this Review also covers the application of nucleic acid cycle amplification and nanomaterial amplification strategies to improve the detection sensitivity. Finally, the limitations and challenges in the design of multiplexed aptasensor are also taken into account.
Hypoxia is a characteristic feature of solid tumors, leading to malignant behavior. During this process, HIF family members (HIFs) and the NF-κB pathway are activated. In addition, the hypoxia-associated factor (HAF) is reported to participate in the regulation of HIFs. However, the precise relationship among HIFs, HAF and the NF-κB pathway in bladder cancer (BC) remains unknown. In the current investigation, T24 BC cells were exposed to hypoxia, or by plasmid transfection to overexpress HAF or RelA (P65) to demonstrate their roles. The results indicate that hypoxia leads to the elevation of HAF plus activation of the NF-κB pathway, accompanied by the switch of HIF-1α to HIF-2α, resulting in the enhanced ability of malignancy in T24 cells. In order to further demonstrate the significance of this switch, HIF-1α and HIF-2α were co-transfected into T24 cells with HIF-β, respectively. The following results indicate that the T24hif-2α/β cells show enhanced ability of malignancy, accompanied by the maintenance of stem-cell markers, but the T24hif-1α/β cells show higher expression of metabolism-related genes. Boyden assays and wound-healing assays indicate the enhanced ability of malignancy for T24hif-2α/β. Thus, we conclude that on the hypoxic microenvironment, the switching of HIF-1α to HIF-2α, which is driven by HAF through activating the NF-κB pathway, contributes to the malignancy of T24 cells, accompanied by the maintenance of stem-cell markers. This provides us an avenue for understanding the progression of bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.