In contrast to other transgenic Bacillus thuringiensis (Bt) crops (e.g. Bt maize and cotton), risk assessments of Bt rice on soil ecosystem are few. To assess the influence of Bt rice on rhizosphere soil ecosystems, soil samples from Bt, non-Bt and controls were taken at seedling, tillering, booting, heading and maturing stages. The activities of dehydrogenases, invertase, phenol oxidases, acid phosphatases, ureases and proteases showed no significant differences between Bt and non-Bt rice. A Biolog system was used to evaluate the effect of Bt rice on functional diversity of microbial communities. Although there were differences in carbon substrate utilization between Bt and non-Bt rice at seedling, tillering and heading stages, these differences were transient and not persistent. Denaturing gradient gel electrophoresis (DGGE) fingerprint patterns showed that Bt rice had little effect on the dominant rhizosphere bacterial, fungal and actinobacterial communities. The richness and consistency of microbial communities according to carbon substrate utilizations and DGGE band patterns did not differ significantly between Bt and nonBt rice, and were close to that of control soil. There was no evidence to indicate apparent effects of Bt rice on soil enzyme activities, microbial community composition and functional diversity in this study.
Conductive polymers have many advanced applications, but there is still an important target in developing a general and straightforward strategy for printable, mechanically stable, and durable organohydrogels with typical conducting polymers of, for example, polypyrrole, polyaniline, or poly (3,4-ethylenedioxythiophene). Here we report a protein crystallization-mediated selfstrengthening strategy to fabricate printable conducting organohydrogels with the combination of rational photochemistry design. Such organohydrogels are one-step prepared via rapidly and orthogonally controllable photopolymerizations of pyrroles and gelatin protein in tens of seconds. As-prepared conducting organohydrogels are patterned and printed to complicated structures via shadow-mask lithography and 3D extrusion technology. The mild photocatalytic system gives the transition metal carbide/nitride (MXene) component high stability during the oxidative preparation process and storage. Controlling water evaporation promotes gelatin crystallization in the as-prepared organohydrogels that significantly self-strengthens their mechanical property and stability in a broad temperature range and durability against continuous friction treatment without introducing guest functional materials. Also, these organohydrogels have commercially electromagnetic shielding, thermal conducting properties, and temperature-and light-responsibility. To further demonstrate the merits of this simple strategy and as-prepared organohydrogels, prism arrays, as proofs-of-concept, are printed and applied to make wearable triboelectric nanogenerators. This self-strengthening process and 3D-printability can greatly improve their voltage, charge, and current output performances compared to the undried and flat samples.
ABSTRACT. The magnitude of inbreeding depression within populations is important for the evolution and maintenance of mixed mating systems. However, data are sparse on the magnitude of inbreeding depression in Robinia pseudoacacia. In this study, we compared differences in the mature seed set per fruit, seed mass, germination success, and seedling growth between self-and crosspollination treatments and estimated the inbreeding depression at 3 stages: seed maturation, seedling emergence, and seedling growth at 10 and 20 weeks. We found that progenies resulting from cross-pollination treatments showed significantly higher fitness than progenies resulting from self-pollination, causing high levels of inbreeding depression. Inbreeding depression was not uniformly manifested, however, over the 3 stages. Inbreeding depression was the greatest between fertilization Inbreeding depression may promote outcrossing in R. pseudoacacia by acting as a post-pollination barrier to selfing. The large difference in the seed set between self-and cross-pollination that we detected indicated that inbreeding depression would probably be a reasonable explanation for the high abortion and low seed set in R. pseudoacacia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.