An approach to establish a soil environmental assessment model was proposed to evaluate the soil environmental quality level. The kriging technique and a self-organizing map (SOM) were integrated to investigate the soil environmental quality in a geographic information system (GIS). In this study, SOM was applied to categorize the data set of nine heavy metals in topsoil. A total of 261 topsoil samples were collected to determine the concentrations of Cu, Pb, Zn, Cd, Ni, Cr, Hg, As, and Mn. The samples were clustered into three classes by SOM and visualized by GIS. The results show that different environmental quality categories are significantly different and that the soil environmental quality assessment model is effective.
Arterial blood pressure is not only an important index that must be measured in routine physical examination but also a key monitoring parameter of the cardiovascular system in cardiac surgery, drug testing, and intensive care. To improve the measurement accuracy of continuous blood pressure, this paper uses photoplethysmography (PPG) signals to estimate diastolic blood pressure and systolic blood pressure based on ensemble empirical mode decomposition (EEMD) and temporal convolutional network (TCN). In this method, the clean PPG signal is decomposed by EEMD to obtain n-order intrinsic mode functions (IMF), and then the IMF and the original PPG are input into the constructed TCN neural network model, and the results are output. The results show that TCN has better performance than CNN, CNN-LSTM, and CNN-GRU. Using the data added with IMF, the results of the above neural network model are better than those of the model with only PPG as input, in which the systolic blood pressure (SBP) and diastolic blood pressure (DBP) results of EEMD-TCN are −1.55 ± 9.92 mmHg and 0.41 ± 4.86 mmHg. According to the estimation results, DBP meets the requirements of the AAMI standard, BHS evaluates it as Grade A, SD of SBP is close to the standard AAMI, and BHS evaluates it as Grade B.
Long noncoding RNAs (lncRNAs) are a class of RNAs longer than 200 nt and cannot encode the protein. Studies have shown that lncRNAs can regulate gene expression at the epigenetic, transcriptional, and posttranscriptional levels, which are not only closely related to the occurrence, development, and prevention of human diseases, but also can regulate plant flowering and participate in plant abiotic stress responses such as drought and salt. Therefore, how to accurately and efficiently identify lncRNAs is still an essential job of relevant researches. There have been a large number of identification tools based on machine-learning and deep learning algorithms, mostly using human and mouse gene sequences as training sets, seldom plants, and only using one or one class of feature selection methods after feature extraction. We developed an identification model containing dicot, monocot, algae, moss, and fern. After comparing 20 feature selection methods (seven filter and thirteen wrapper methods) combined with seven classifiers, respectively, considering the correlation between features and model redundancy at the same time, we found that the WOA-XGBoost-based model had better performance with 91.55%, 96.78%, and 91.68% of accuracy, AUC, and F1_score. Meanwhile, the number of elements in the feature subset was reduced to 23, which effectively improved the prediction accuracy and modeling efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.