This paper presents the development of a highly sensitive gas detection system based on a resonant photoacoustic cell for detecting dissolved gases in transformer oil. A simulation model of the resonant photoacoustic cell was studied and optimized the buffer chamber volume while ensuring signal enhancement. The volume of the photoacoustic cell was reduced by about 80% compared to the classical model. A resonant photoacoustic cell was then fabricated based on the optimized simulation optimization. The dual-resonance photoacoustic system was constructed by combining the resonant PA cell with a handmade cantilever fiber acoustic sensor. The system’s sensitivity was further improved by using an erbium-doped fiber amplifier, wavelength modulation, and harmonic detection technology. The experimental results showed that the system achieved a detection limit of 6 ppb and an excellent linear range under 1000 ppm for C2H2 gas. The developed gas detection system has potential applications for monitoring the condition of power transformers in power grids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.