With the development of nanotechnology, nanoparticles have been used in various industries. In medicine, nanoparticles have been used in the diagnosis and treatment of diseases. The kidney is an important organ for waste excretion and maintaining the balance of the internal environment; it filters various metabolic wastes. Kidney dysfunction may result in the accumulation of excess water and various toxins in the body without being discharged, leading to complications and life-threatening conditions. Based on their physical and chemical properties, nanoparticles can enter cells and cross biological barriers to reach the kidneys and therefore, can be used in the diagnosis and treatment of chronic kidney disease (CKD). In the first search, we used the English terms “Renal Insufficiency, Chronic” [Mesh] as the subject word and terms such as “Chronic Renal Insufficiencies,” “Chronic Renal Insufficiency,” “Chronic Kidney Diseases,” “Kidney Disease, Chronic,” “Renal Disease, Chronic” as free words. In the second search, we used “Nanoparticles” [Mesh] as the subject word and “Nanocrystalline Materials,” “Materials, Nanocrystalline,” “Nanocrystals,” and others as free words. The relevant literature was searched and read. Moreover, we analyzed and summarized the application and mechanism of nanoparticles in the diagnosis of CKD, application of nanoparticles in the diagnosis and treatment of renal fibrosis and vascular calcification (VC), and their clinical application in patients undergoing dialysis. Specifically, we found that nanoparticles can detect CKD in the early stages in a variety of ways, such as via breath sensors that detect gases and biosensors that detect urine and can be used as a contrast agent to avoid kidney damage. In addition, nanoparticles can be used to treat and reverse renal fibrosis, as well as detect and treat VC in patients with early CKD. Simultaneously, nanoparticles can improve safety and convenience for patients undergoing dialysis. Finally, we summarize the current advantages and limitations of nanoparticles applied to CKD as well as their future prospects.
Managing patient ‘dry weight’ according to clinical standards has deficiencies. Research has focused on the effectiveness of using bioelectrical impedance technology for fluid management in dialysis patients. Whether bioelectrical impedance monitoring can improve dialysis patients prognoses remain controversial. We performed a meta-analysis of randomized controlled trials to determine whether bioelectrical impedance was effective in improving dialysis patients prognoses. The primary outcome was all-cause mortality (13.6 ± 9.1 months). Secondary outcomes were left ventricular mass index (LVMI), arterial stiffness assessed using Pulse Wave Velocity (PWV), and N-terminal brain natriuretic peptide precursor (NT-proBNP). Of 4,641 citations retrieved, we identified 15 eligible trials involving 2763 patients divided into experimental ( n = 1386) and control ( n = 1377) groups. In 14 studies with mortality data, the meta-analysis showed that bioelectrical impedance intervention reduced the risk of all-cause mortality (rate ratios [RR]: 0.71; 95% confidence interval [CI]: 0.51, 0.99; p = .05; I2 = 1%). Subgroup analysis of patients on hemodialysis (RR: 0.72; 95% CI: 0.42, 1.22; p = .22) and peritoneal dialysis (RR: 0.62; 95% CI: 0.35, 1.07; p = .08) showed no significant mortality difference between intervention and control groups. It reduced the risk of all-cause mortality in the Asian population (RR: 0.52; p = .02), and reduced NT-proBNP (mean difference [MD]: −1495.73; p = 0.002; I 2 =0%) and PWV (MD: −1.55; p = .01; I 2 =89%). Bioelectrical impedance intervention reduced the LVMI in hemodialysis patients (MD: −12.69; p < .0001; I 2 =0%). Our analysis shows that in dialysis patients, bioelectrical impedance technology intervention could reduce, but not eliminate, the risk of all-cause mortality. Overall, this technology can improve the prognosis of dialysis patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.