Apple quality classification is an important means to refine apple sales market and promote apple sales. At present, most of classification methods based on a convolutional neural network (CNN) depend on the quantity of training samples to get good performance. But due to the lack of large-scale public apple appearance dataset, it is a big challenge to obtain high accuracy of apple appearance quality classification with small samples. Therefore, we propose an improved method based on CNN for apple appearance, quality classification with small samples. Firstly, support vector machine (SVM) is used for image segmentation to avoid the decrease of recognition accuracy caused by environmental noise. Secondly, the segmented image data are input into deep convolutional generative adversarial networks (DCGAN) model, which is used for data expansion. Thirdly, the improved ResNet50 (Imp-ResNet50) is proposed as follows: Replace the fully-connected layer with global average pooling layer; Add the dropout algorithm and batch normalization algorithm at the fully-connected layer; Replace the activation function ReLU with Swish. Through comparative experiments with 360 apple images, we verify the performance of the proposed method including the training image quality, the running time, and classification accuracy. The result shows that the proposed method can obtain high quality training samples and reduce the running time of the method effectively. At the same time, it can realize higher classification accuracy that is up to 96.5%, which is higher than the previous classification method.INDEX TERMS Apple quality classification, SVM, DCGAN, ResNet50.
In order to explore the application of robots in intelligent supply-chain and digital logistics, and to achieve efficient operation, energy conservation, and emission reduction in the field of warehousing and sorting, we conducted research in the field of unmanned sorting and automated warehousing. Under the guidance of the theory of sustainable development, the ESG (Environmental Social Governance) goals in the social aspect are realized through digital technology in the storage field. In the picking process of warehousing, efficient and accurate cargo identification is the premise to ensure the accuracy and timeliness of intelligent robot operation. According to the driving and grasping methods of different robot arms, the image recognition model of arbitrarily shaped objects is established by using a convolution neural network (CNN) on the basis of simulating a human hand grasping objects. The model updates the loss function value and global step size by exponential decay and moving average, realizes the identification and classification of goods, and obtains the running dynamics of the program in real time by using visual tools. In addition, combined with the different characteristics of the data set, such as shape, size, surface material, brittleness, weight, among others, different intelligent grab solutions are selected for different types of goods to realize the automatic picking of goods of any shape in the picking list. Through the application of intelligent item grabbing in the storage field, it lays a foundation for the construction of an intelligent supply-chain system, and provides a new research perspective for cooperative robots (COBOT) in the field of logistics warehousing.
Order picking is a crucial operation in the storage industry, with a significant impact on storage efficiency and cost. Responding quickly to customer demands and shortening picking time is crucial given the random nature of order arrival times and quantities. This paper presents a study on the order-picking process in a distribution center, employing a “parts-to-picker” system, based on dynamic order batching and task optimization. Firstly, dynamic arriving orders with uncertain information are transformed into static picking orders with known information. A new method of the hybrid time window is proposed by combining fixed and variable time windows, and an order consolidation batch strategy is established with the aim of minimizing the number of target shelves for picking. A heuristic algorithm is designed to select a shelf selection model, taking into account the constraint condition that the goods on the shelf can meet the demand of the selection list. Subsequently, task division of multi-AGV is carried out on the shelf to be picked, and the matching between the target shelf and the AGVs, as well as the order of the AGVs to complete the task of picking, is determined. A scheduling strategy model is constructed to consider the task completion time as the incorporation of moving time, queuing time, and picking time, with the shortest task completion time as the objective function and AGV task selection as the decision variable. The improved ant colony algorithm is employed to solve the problem. The average response time of the order batching algorithm based on a hybrid time window is 4.87 s, showing an improvement of 22.20% and 40.2% compared to fixed and variable time windows, respectively. The convergence efficiency of the improved ant colony algorithm in AGV task allocation is improved four-fold, with a better convergence effect. By pre-selecting the nearest picking station for the AGVs, the multi-AGV picking system can increase the queuing time. Therefore, optimizing the static picking station selection and dynamically selecting the picking station queue based on the queuing situation are proposed. The Flexsim simulation results show that the queue-waiting and picking completion times are reduced to 34% of the original, thus improving the flexibility of the queuing process and enhancing picking efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.