Objective: Observational studies have shown the association between iron status and osteoarthritis (OA). However, due to difficulties of determining sequential temporality, their causal association is still elusive. Based on the summary data of genome-wide association studies (GWASs) of a large-scale population, this study explored the genetic causal association between iron status and OA. Methods: First, we took a series of quality control steps to select eligible instrumental SNPs which were strongly associated with exposure. The genetic causal association between iron status and OA was analyzed using the two-sample Mendelian randomization (MR). Inverse-variance weighted (IVW), MR-Egger, weighted median, simple mode, and weighted mode methods were used for analysis. The results were mainly based on IVW (random effects), followed by sensitivity analysis. IVW and MR-Egger were used for heterogeneity testing. MR-Egger was also used for pleiotropy testing. Leave-one-SNP-out analysis was used to identify single nucleotide polymorphisms (SNPs) with potential impact. Maximum likelihood, penalized weighted median, and IVW (fixed effects) were performed to further validate the reliability of results. Results: IVW results showed that transferrin saturation had a positive causal association with knee osteoarthritis (KOA), hip osteoarthritis (HOA) and KOA or HOA (p < 0.05, OR > 1), and there was a negative causal association between transferrin and HOA and KOA or HOA (p < 0.05, OR < 1). The results of heterogeneity test showed that our IVW analysis results were basically free of heterogeneity (p > 0.05). The results of the pleiotropy test showed that there was no pleiotropy in our IVW analysis (p > 0.05). The analysis results of maximum likelihood, penalized weighted median and IVW (fixed effects) were consistent with our IVW results. No genetic causal association was found between serum iron and ferritin and OA. Conclusions: This study provides evidence of the causal association between iron status and OA, which provides novel insights to the genetic research of OA.
Osteoarthritis (OA) is a prevalent degenerative joint disease characterized by cartilage loss and accounts for a major source of pain and disability worldwide. However, effective strategies for cartilage repair are lacking, and patients with advanced OA usually need joint replacement. Better comprehending OA pathogenesis may lead to transformative therapeutics. Recently studies have reported that exosomes act as a new means of cell-to-cell communication by delivering multiple bioactive molecules to create a particular microenvironment that tunes cartilage behavior. Specifically, exosome cargos, such as noncoding RNAs (ncRNAs) and proteins, play a crucial role in OA progression by regulating the proliferation, apoptosis, autophagy, and inflammatory response of joint cells, rendering them promising candidates for OA monitoring and treatment. This review systematically summarizes the current insight regarding the biogenesis and function of exosomes and their potential as therapeutic tools targeting cell-to-cell communication in OA, suggesting new realms to improve OA management.
Adequate new bone regeneration in bone defects has always been a challenge as it requires excellent and efficient osteogenesis. Calcium phosphate (CaP) bioceramics, including hydroxyapatite (HA) and biphasic calcium phosphates (BCPs), have been extensively used in clinical bone defect filling due to their good osteoinductivity and biodegradability. Here, for the first time, we designed and fabricated two porous CaP bioceramic granules with core−shell structures, named in accordance with their composition as BCP@HA and HA@BCP (core@shell). The spherical shape and the porous structure of these granules were achieved by the calcium alginate gel molding technology combined with a H 2 O 2 foaming process. These granules could be stacked to build a porous structure with a porosity of 65−70% and a micropore size distribution between 150 and 450 μm, which is reported to be good for new bone ingrowth. In vitro experiments confirmed that HA@BCP bioceramic granules could promote the proliferation and osteogenic ability when cocultured with bone marrow mesenchymal stem cells, while inhibiting the differentiation of RAW264.7 cells into osteoclasts. In vivo, 12 weeks of implantation in a critical-sized femoral bone defect animal model showed a higher bone volume fraction and bone mineral density in the HA@BCP group than in the BCP@HA or pure HA or BCP groups. From histological analysis, we discovered that the new bone tissue in the HA@BCP group was invading from the surface to the inside of the granules, and most of the bioceramic phase was replaced by the new bone. A higher degree of vascularization at the defect region repaired by HA@BCP was revealed by 3D microvascular perfusion angiography in terms of a higher vessel volume fraction. The current study demonstrated that the core−shell structured HA@BCP bioceramic granules could be a promising candidate for bone defect repair.
Osteoarthritis (OA) is mainly characterized by the progressive destruction of articular cartilage. Mounting studies have revealed that disruption of extracellular matrix (ECM) homeostasis, aberrant chondrocyte metabolism, an increase in the number of senescent chondrocytes and abnormal activation of cell death such as chondrocyte apoptosis and autophagy, are the crucial steps in OA development. Additionally, mitochondrial dysfunction also participates in the abovementioned processes and is the key element of OA pathogenesis. Sirtuin (SIRT) is a family of nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylases that can actively participate and primarily regulate chondrocyte function in OA pathophysiological processes. Some members of the SIRT family located in mitochondria can regulate mitochondrial function and mediate mitochondrial homeostasis via deacetylation to protect chondrocytes. In addition, SIRT can maintain ECM homeostasis, regulate chondrocyte metabolism, inhibit chondrocyte apoptosis and autophagy, and prevent chondrocyte senescence in cartilage by exerting its deacetylation activity. However, the molecular mechanism of the SIRT family against the onset and development of OA remains poorly elucidated. In this review, we will discuss the potential protective role of SIRT in the progression of OA and summarize several sirtuin-activating molecules as well as their potential therapeutic applications for OA.
Objectives: Perioperative enhanced recovery after surgery (ERAS) protocols can improve the quality of healthcare and reduce hospitalization for patients who underwent total hip arthroplasty (THA). The interval of staged bilateral THA under ERAS is still unclear. We attempt to ascertain the optimal interval of staged bilateral THA for reducing the perioperative complications and the cost of hospitalization. Methods:We retrospectively reviewed patients who received staged bilateral THA under ERAS performed at West China Hospital of Sichuan University from 2018 to 2021. The staged time was divided into two groups using four different cutoff points: (1) ≤3 months versus >3 months, (2) ≤4 months versus >4 months, (3) ≤5 months versus >5 months and (4) ≤6 months versus >6 months. Primary outcomes included the rate of perioperative complications and the cost of hospitalization. The secondary outcomes were the length of hospital stay (LOS), the rates of transfusion and albumin (Alb) administration, hemoglobin (Hb) decrease and serum Alb decrease. The categorical variables were compared using chisquared and/or two-tailed Fisher's exact tests, whereas continuous variables were compared using two-tailed independent t-tests, the continuous variables which were asymmetrical distributions used a Kruskal-Wallis test.Results: With the application of ERAS, the rate of perioperative complications in the >5 months group was significantly lower than that in the ≤5 months group (13/195 vs. 45/307, p < 0.05). Concerning the cost of hospitalization, the >5 monthly intervals spent significantly less than the ≤5 monthly intervals ($ 8695.91 vs. $ 8919.71, p < 0.05). However, no significant difference was found for secondary outcomes such as the rate of transfusions and Alb administrations or decreases of Hb and Alb in the 5 months threshold.Conclusions: More than 5 months maybe a reasonable period to perform the first contralateral THA under ERAS regarding the rate of perioperative complications and the cost of hospitalization. However, more high-quality research will include a larger sample size in the future to validate the appropriate time of staged bilateral THA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.