Organometal halide perovskite-based solar cells have recently been reported to be highly efficient, giving an overall power conversion efficiency of up to 15%. However, much of the fundamental photophysical properties underlying this performance has remained unknown. Here, we apply photoluminescence, transient absorption, time-resolved terahertz and microwave conductivity measurements to determine the time scales of generation and recombination of charge carriers as well as their transport properties in solution-processed CH3NH3PbI3 perovskite materials. We found that electron-hole pairs are generated almost instantaneously after photoexcitation and dissociate in 2 ps forming highly mobile charges (25 cm(2) V(-1) s(-1)) in the neat perovskite and in perovskite/alumina blends; almost balanced electron and hole mobilities remain very high up to the microsecond time scale. When the perovskite is introduced into a TiO2 mesoporous structure, electron injection from perovskite to the metal oxide is efficient in less than a picosecond, but the lower intrinsic electron mobility of TiO2 leads to unbalanced charge transport. Microwave conductivity measurements showed that the decay of mobile charges is very slow in CH3NH3PbI3, lasting up to tens of microseconds. These results unravel the remarkable intrinsic properties of CH3NH3PbI3 perovskite material if used as light absorber and charge transport layer. Moreover, finding a metal oxide with higher electron mobility may further increase the performance of this class of solar cells.
The long wavelength (far-red to NIR) analyte-responsive fluorescent probes are advantageous for in vivo bioimaging because of minimum photo-damage to biological samples, deep tissue penetration, and minimum interference from background auto-fluorescence by biomolecules in the living systems. Thus, great interest in the development of new long wavelength analyte-responsive fluorescent probes has emerged in recent years. This review highlights the advances in the development of far-red to NIR fluorescent probes since 2000, and the probes are classified according to their organic dye platforms into various categories, including cyanines, rhodamine analogues, BODIPYs, squaraines, and other types (240 references).
Conventional 3D organic-inorganic halide perovskites have recently undergone unprecedented rapid development. Yet, their inherent instabilities over moisture, light, and heat remain a crucial challenge prior to the realization of commercialization. By contrast, the emerging 2D Ruddlesden-Popper-type perovskites have recently attracted increasing attention owing to their great environmental stability. However, the research of 2D perovskites is just in their infancy. In comparison to 3D analogues, they are natural quantum wells with a much larger exciton binding energy. Moreover, their inner structural, dielectric, optical, and excitonic properties remain to be largely explored, limiting further applications. This review begins with an introduction to 2D perovskites, along with a detailed comparison to 3D counterparts. Then, a discussion of the organic spacer cation engineering of 2D perovskites is presented. Next, quasi-2D perovskites that fall between 3D and 2D perovskites are reviewed and compared. The unique excitonic properties, electron-phonon coupling, and polarons of 2D perovskites are then be revealed. A range of their (opto)electronic applications is highlighted in each section. Finally, a summary is given, and the strategies toward structural design, growth control, and photophysics studies of 2D perovskites for high-performance electronic devices are rationalized.
Solar cells based on organometal halide perovskites have seen rapidly increasing efficiencies, now exceeding 15%. Despite this progress, there is still limited knowledge on the fundamental photophysics. Here we use microwave photoconductance and photoluminescence measurements to investigate the temperature dependence of the carrier generation, mobility, and recombination in (CH3NH3)PbI3. At temperatures maintaining the tetragonal crystal phase of the perovskite, we find an exciton binding energy of about 32 meV, leading to a temperature-dependent yield of highly mobile (6.2 cm(2)/(V s) at 300 K) charge carriers. At higher laser intensities, second-order recombination with a rate constant of γ = 13 × 10(-10) cm(3) s(-1) becomes apparent. Reducing the temperature results in increasing charge carrier mobilities following a T(-1.6) dependence, which we attribute to a reduction in phonon scattering (Σμ = 16 cm(2)/(V s) at 165 K). Despite the fact that Σμ increases, γ diminishes with a factor six, implying that charge recombination in (CH3NH3)PbI3 is temperature activated. The results underline the importance of the perovskite crystal structure, the exciton binding energy, and the activation energy for recombination as key factors in optimizing new perovskite materials.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.