Skin‐inspired wearable devices hold great potentials in the next generation of smart portable electronics owing to their intriguing applications in healthcare monitoring, soft robotics, artificial intelligence, and human–machine interfaces. Despite tremendous research efforts dedicated to judiciously tailoring wearable devices in terms of their thickness, portability, flexibility, bendability as well as stretchability, the emerging Internet of Things demand the skin‐interfaced flexible systems to be endowed with additional functionalities with the capability of mimicking skin‐like perception and beyond. This review covers and highlights the latest advances of burgeoning multifunctional wearable electronics, primarily including versatile multimodal sensor systems, self‐healing material‐based devices, and self‐powered flexible sensors. To render the penetration of human‐interactive devices into global markets and households, economical manufacturing techniques are crucial to achieve large‐scale flexible systems with high‐throughput capability. The booming innovations in this research field will push the scientific community forward and benefit human beings in the near future.
Surface‐enhanced Raman scattering (SERS) spectroscopy provides a noninvasive and highly sensitive route for fingerprint and label‐free detection of a wide range of molecules. Recently, flexible SERS has attracted increasingly tremendous research interest due to its unique advantages compared to rigid substrate‐based SERS. Here, the latest advances in flexible substrate‐based SERS diagnostic devices are investigated in‐depth. First, the intriguing prospect of point‐of‐care diagnostics is briefly described, followed by an introduction to the cutting‐edge SERS technique. Then, the focus is moved from conventional rigid substrate‐based SERS to the emerging flexible SERS technique. The main part of this report highlights the recent three categories of flexible SERS substrates, including actively tunable SERS, swab‐sampling strategy, and the in situ SERS detection approach. Furthermore, other promising means of flexible SERS are also introduced. The flexible SERS substrates with low‐cost, batch‐fabrication, and easy‐to‐operate characteristics can be integrated into portable Raman spectroscopes for point‐of‐care diagnostics, which are conceivable to penetrate global markets and households as next‐generation wearable sensors in the near future.
The rising global human population and increased environmental stresses require a higher plant productivity while balancing the ecosystem using advanced nanoelectronic technologies. Although multifunctional wearable devices have played distinct roles in human healthcare monitoring and disease diagnosis, probing potential physiological health issues in plants poses a formidable challenge due to their biological complexity. Herein an integrated multimodal flexible sensor system is proposed for plant growth management using stacked ZnIn2S4(ZIS) nanosheets as the kernel sensing media. The proposed ZIS-based flexible sensor can not only perceive light illumination at a fast response (∼4 ms) but also monitor the humidity with a perdurable steady performance that has yet to be reported elsewhere. First-principles calculations reveal that the tunneling effect dominates the current model associated with humidity response. This finding guides the investigation on the plant stomatal functions by measuring plant transpiration. Significantly, dehydration conditions are visually recorded during a monitoring period (>15 days). This work may contribute to plant–machine biointerfaces to precisely manage plant health status and judiciously utilize limited resources.
A kirigami-based graphene–polymer hybrid nanocomposite is realized by a laser direct writing technique for reliable skin-inspired strain sensors, presenting almost no performance degradation even after >60 000 stretching cycle tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.