To explore the potential of high-entropy alloys (HEAs) as energetic structural materials (ESMs), Al0.5NbZrTi1.5Ta0.8Ce0.85 high-entropy alloys were prepared by vacuum arc melting. XRD and TEM indicated the coexistence of BCC and FCC structures. SEM images illustrated element segregation in HEA. HEA exhibited excellent mechanical properties and impact energy release characteristics. When the strain rate increased from 10-3 s-1 to 4500 s-1, the yield strength increased by 56.2% from 909 MPa to 1420 MPa. Under impact, the threshold of strain rate of HEA was about 1200 s-1. Bal-listic gun tests were performed to investigate the penetration behavior and energy-releasing characteristics. Al0.5NbZrTi1.5Ta0.8Ce0.85 could penetrate 6mm A3 plate at the speed of 712 m/s and ignite the cotton behind the target, combining excellent mechanical properties and impact energy release characteristics.
Energetic structural materials play an important role in improving the damage performance of future weapons. To improve the energy-releasing behavior, Al0.5NbZrTi1.5Ta0.8Cex high-entropy alloys were prepared by vacuum-arc melting. The results showed the presence of BCC and FCC phases in the alloy with dendritic-morphology-element segregation and there were significant dislocations in the alloys. The current study focused on the effects of cerium content on the dynamic compressive mechanical and energetic characteristics. Cerium doping enhanced the energy-releasing characteristics of high-entropy alloys. The severity of the reaction increased with the increase in the cerium content, while the dynamic compressive strength generally decreased with the increase in cerium content. The Al0.5NbZrTi1.5Ta0.8Ce0.25 showed excellent mechanical and energy-releasing characteristics. The ballistic experiments indicated that Al0.5NbZrTi1.5Ta0.8Ce0.25 can penetrate 6-millimeter A3 plates and ignite the cotton behind the target at a velocity of 729 m/s, making it an ideal energetic structural material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.