Anion exchange membrane water electrolysis (AEMWE) offers an opportunity to use inexpensive nonprecious metal catalysts. However, pure water-fed AEMWE still faces issues of durability. Herein, we compared the stability of AEMWE under different anolytes, including KOH, pure water, and a phosphate buffer (PB) using a NiFeCo oxygen evolution reaction catalyst. Upon thoroughly characterizing several changes before/after 100 h durability tests, such as the cell performance, catalyst dissolution, catalyst morphologies, impedance of the anion exchange membrane, and catalytic layer, we speculate that the change of the local pH is the main factor causing catalyst reconstruction, which further leads to the loss of cell performance in the pure water-fed mode. By using PB to control the local pH, the morphology of the catalyst will no longer change after the durability test, and the cell performance can recover to the initial performance in pure water. These results not only indicate that the catalyst structural transformation is the main reason for the deactivation of pure water-fed AEMWE but also help find a way to achieve highly durable pure water-fed AEMWE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.