The main methods of coalbed methane (CBM) development are drainage and depressurization, and a precise prediction of coal reservoir pressure is thus crucial for the evaluation of reservoir potentials and the formulation of reasonable development plans. This work established a new reservoir pressure prediction model based on the material balance equation (MBE) of coal reservoir, which considers the self‐regulating effects of coal reservoirs and the dynamic change of equivalent drainage area (EDA). According to the proposed model, the reservoir pressure can be predicted based on reservoir condition data and the actual production data of a single well. Compared with traditional reservoir pressure prediction models which regard EDA as a fixed value, the proposed model can better predict the average pressure of reservoirs. Moreover, orthogonal experiments were designed to evaluate the sensitivity of reservoir parameters on the reservoir pressure prediction results of this proposed model. The results show that the saturation of irreducible water is the most sensitive parameter, followed by Langmuir volume and reservoir porosity, and Langmuir pressure is the least sensitive parameter. In addition, the pressure drop of reservoirs is negatively correlated with the saturation of irreducible water and the Langmuir volume, while it is positively correlated with porosity. This work analyzed the reservoir pressure drop characteristics of the CBM wells in the Shizhuangnan Block of the Qinshui Basin, and the results show that the CBM reservoir depressurization can be divided into three types, i.e., rapidly drop type, medium‐term stability type, and slowly drop type. The drainage features of wells were reasonably interpreted based on the comprehensive analysis of the reservoir depressurization type; the latter was coupled to the corresponding permeability dynamic change characteristics, eventually proving the applicability of the proposed model.
Fluorine, a hazard that is associated with coal, has resulted in serious environmental issues during the production and utilization of coal. In this paper, we provide a detailed review of fluorine in Chinese coal, including the distribution, concentration, modes of occurrence, genetic factors, and environmental effects. The average concentration of fluorine in Chinese coal is 130.0 mg/kg, which is slightly higher than coal worldwide (88.0 mg/kg). The enrichment of fluorine in Chinese coal varies across different coal deposit regions, and it is especially high in Inner Mongolia (Junger coalfield, Daqingshan coalfield) and southwest China (coal mining regions in Yunnan, Guizhou province). The fluorine distribution is uneven, with a relatively high content in southwest coal (including Yunnan, Guizhou, Chongqing, and Sichuan provinces), very high content in the coal of North China (Inner Mongolia) and South China (Guangxi), and is occasionally found in the northwest (Qinghai). Fluorine occurs in various forms in coal, such as independent minerals (fluorine exists as fluorapatite or fluorite in coal from Muli of Qinghai, Taoshuping of Yunnan, Guiding of Guizhou, and Daqingshan of Inner Mongolia), adsorption on minerals (fluorine in coal from Nantong, Songzao of Chongqing, Guxu of Sichuan, and Shengli, Daqingshan, and Junger from Inner Mongolia), substitution in minerals (Wuda coal, Inner Mongolia), and a water-soluble form (Haerwusu coal, Inner Mongolia). The enrichment of fluorine is mainly attributed to the weathering of source rock and hydrothermal fluids; in addition to that, volcanic ash, marine water influence, and groundwater affect the fluorine enrichment in some cases. Some environmental and human health problems are related to fluorine in coal, such as damage to the surrounding environment and husbandry (poisoning of livestock) during the coal combustion process, and many people have suffered from fluorosis due to the burning of coal (endemic fluorosis in southwest China).
As a reservoir reconstruction technology, hydraulic fracturing is a key method to improve the production of coalbed methane (CBM) wells. The CBM reservoir in eastern Yunnan, an important CBM exploration and development zone in China, is characterized by multiple thin coal seams. Compared to the fracturing of the single-layer coal seam, the combined seam fracturing technology is more difficult and complex. To study the fracture propagation characteristics and influencing factors of hydraulic fracturing in multiple coal seams, taking No. 9 and No. 13 coal seams as the research objects, the fracturing process was numerically simulated by using the finite element method and ANSYS software in this work. Based on the mathematical model of low permeable coal-rock mass, a two-dimensional hydraulic fracture model was established. In addition, the fracture geometries of combined seam fracturing were studied quantitatively. The results indicate that although No. 9 coal and No. 13 coal seams have similar rock mechanical properties, the propagation process and final geometry of a fracture are different. The reliability of the simulation results is verified by the comparison of experimental parameters and field investigation. The results prove the feasibility of combined seam fracturing in eastern Yunnan. The high Young’s modulus and thickness of the coal seam make the fracture geometry longer, but the fracture height is smaller. The low Young’s modulus, high Poisson’s ratio, and thickness of the No. 13 coal seam result in an increase in the length and height of the No. 9 coal seam. The increase in Young’s modulus of interlayer inhibits the propagation of fractures, while the high thickness and low Poisson’s ratio of interlayers facilitate the extension of the length and inhibit the extension of the height. This work provides a case reference for combined seam fracturing of coal reservoirs and has practical significance for the development of CBM characterized by multiple coal seams in eastern Yunnan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.