We report on the catalytic pyrolysis of switchgrass and its three main components (cellulose, hemicellulose and lignin) over H-ZSM5 catalyst. The yields of aromatic hydrocarbons for the three components decreased in the following order: cellulose > hemicellulose ≫ lignin. Moderately higher temperature favored formation of aromatics. The results indicate that H-ZSM5 catalyst did not remove oxygen in an optimal pathway for catalytic pyrolysis of biomass. Dehydration was the dominant oxygen removal mechanism for catalytic pyrolysis, while decarbonylation to CO was favored over decarboxylation to CO 2 . This suggests that higher yields of aromatics might be achieved by catalyst improvements or reactor design that optimizes deoxygenation pathway. For cellulose and hemicellulose, coke produced catalytically contributed a larger fraction of solid carbonaceous residue than char from purely thermal processes. In the case of lignin, thermal rather than catalytic processes primarily contribute to the production of solid carbonaceous residue. Product distribution from catalytic pyrolysis of switchgrass appeared to be the additive contribution of the three individual components, which indicates that there was no significant interaction among the biomass-derived products. † Electronic supplementary information (ESI) available. See
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.