Defining action spaces for conversational agents and optimizing their decision-making process with reinforcement learning is an enduring challenge. Common practice has been to use handcrafted dialog acts, or the output vocabulary, e.g. in neural encoder decoders, as the action spaces. Both have their own limitations. This paper proposes a novel latent action framework that treats the action spaces of an end-to-end dialog agent as latent variables and develops unsupervised methods in order to induce its own action space from the data. Comprehensive experiments are conducted examining both continuous and discrete action types and two different optimization methods based on stochastic variational inference. Results show that the proposed latent actions achieve superior empirical performance improvement over previous word-level policy gradient methods on both DealOrNoDeal and MultiWoz dialogs. Our detailed analysis also provides insights about various latent variable approaches for policy learning and can serve as a foundation for developing better latent actions in future research. 1
Dialogue state tracking is the core part of a spoken dialogue system. It estimates the beliefs of possible user's goals at every dialogue turn. However, for most current approaches, it's difficult to scale to large dialogue domains. They have one or more of following limitations: (a) Some models don't work in the situation where slot values in ontology changes dynamically; (b) The number of model parameters is proportional to the number of slots; (c) Some models extract features based on hand-crafted lexicons. To tackle these challenges, we propose StateNet, a universal dialogue state tracker. It is independent of the number of values, shares parameters across all slots, and uses pre-trained word vectors instead of explicit semantic dictionaries. Our experiments on two datasets show that our approach not only overcomes the limitations, but also significantly outperforms the performance of state-of-the-art approaches.
Dialogue state tracking (DST), when formulated as a supervised learning problem, relies on labelled data. Since dialogue state annotation usually requires labelling all turns of a single dialogue and utilizing context information, it is very expensive to annotate all available unlabelled data. In this paper, a novel cost-sensitive active learning framework is proposed based on a set of new dialogue-level query strategies. This is the first attempt to apply active learning for dialogue state tracking. Experiments on DSTC2 show that active learning with mixed data query strategies can effectively achieve the same DST performance with significantly less data annotation compared to traditional training approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.