This paper presents an efficient discontinuous Galerkin method to simulate wave propagation in heterogeneous media with sub-cell variations. This method is based on a weight-adjusted discontinuous Galerkin method (WADG), which achieves high order accuracy for arbitrary heterogeneous media [1]. However, the computational cost of WADG grows rapidly with the order of approximation. In this work, we propose a Bernstein-Bézier weight-adjusted discontinuous Galerkin method (BBWADG) to address this cost. By approximating sub-cell heterogeneities by a fixed degree polynomial, the main steps of WADG can be expressed as polynomial multiplication and L 2 projection, which we carry out using fast Bernstein algorithms. The proposed approach reduces the overall computational complexity from O(N 2d ) to O(N d+1 ) in d dimensions. Numerical experiments illustrate the accuracy of the proposed approach, and computational experiments for a GPU implementation of BBWADG verify that this theoretical complexity is achieved in practice.
This article presents high order accurate discontinuous Galerkin (DG) methods for wave problems on moving curved meshes with general choices of basis and quadrature. The proposed method adopts an arbitrary Lagrangian–Eulerian formulation to map the wave equation from a time‐dependent moving physical domain onto a fixed reference domain. For moving curved meshes, weighted mass matrices must be assembled and inverted at each time step when using explicit time‐stepping methods. We avoid this step by utilizing an easily invertible weight‐adjusted approximation. The resulting semi‐discrete weight‐adjusted DG scheme is provably energy stable up to a term that (for a fixed time interval) converges to zero with the same rate as the optimal L2 error estimate. Numerical experiments using both polynomial and B‐spline bases verify the high order accuracy and energy stability of proposed methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.