In this work, HUVECs were mock infected or infected with HTNV for 3 days. Total RNA of the cells were analyzed by RNA-seq and obtained circRNA, miRNA, mRNA library. Differentially expressed (DE) RNAs were identified and subjected to GO analysis, KEGG analysis and ceRNA network construction. Then 8 DE circRNAs, 8 DE mRNAs, 6 DE miRNAs were verified by RT-qPCR. Besides, mRNAs (CMPK2, PARP10, GBP1, and RIG-I), circRNAs (circ_0000479), miRNAs (miR-149-5p, miR-411-3p, and miR-330-5p) in the ceRNA network were found effective to inhibit or promote virus replication. And the circ_0000479-miR-149-5p-RIG-I ceRNA axis was verified in HTNV infection.
Most of the world’s glaciers have retreated significantly against the background of recent climate warming, while reports have indicated that the glaciers in the West Kunlun Mountains (WKL) may be in a relatively stable state, although there are some gaps in previous research. Based on Landsat series data, topographic maps, SRTM and TanDEM-x data, this paper extracts detailed glacial area information and glacial mass balance during different time periods from 1970 to 2018. We found that, the total area of glaciers in the WKL decreased by 8.0 km2 from 1972 to 2018. The area decreased by 12.0 km2 from 1972 to 1991 and increased by 4.7 km2 from 2010 to 2018. Glacier surface elevation change results in the WKL showed that the overall glacier thickness slightly decreased from 1970 to 2016, with an average of 1.9 ± 1.0 m. The glaciers thinned by approximately 2.5 ± 1.0 m from 1970 to 2000, while from 2000 to 2016, the glaciers thickened approximately by 0.6 ± 1.0 m. Overall, the glaciers in the WKL showed very slight retreat. In addition, the mass changes of glaciers were affected by glacial surging.
Glacier surging is a dynamic instability that affects the flow of some glaciers, modifying the glacier area, surface velocity, and surface elevation. It is also among the major causes of ice dams and glacier lake floods. Previous studies have shown that in the West Kunlun Mountains| (WKM) where a cluster of surge‐type glaciers had been found, the glaciers were relatively stable in recent years. Nevertheless, the surge cycle and its impact on glacier changes on a regional scale are poorly understood. In this study, we updated the surge‐type glacier inventory of the WKM using the detailed changes in glacier length, surface velocity, and surface elevation during the 1972–2020 period using 78 Landsat optical images, 86 Sentinel‐1 synthetic aperture radar (SAR) images, and three digital elevation models of the WKM. The updated results show that among the 423 glaciers in the WKM, 10 are confirmed as surge‐type glaciers, three are likely surge‐type glaciers, and five are possible surge‐type glaciers. Furthermore, these 18 glaciers account for 63% of the total glacier area. During the period analyzed, there were marked changes in the lengths, areas and surface elevations of all surge‐type glaciers, while those of the non‐surge‐type glaciers were relatively stable. These results appear to indicate that the observed regional trends of glaciers in the WKM recently may be related to the existence of surge‐type glaciers. Furthermore, the surge‐type glacier underwent advance after accelerating for 3–4 years, which could be used to forecast when glacier termini may advance and avoid the possible catastrophic damages.
Glaciers located in the Qilian Mountains are rapidly retreating and thinning due to climate change. The current understanding of small glacier mass balance changes under a changing climate is limited by the scarcity of in situ measurements in both time and space as well as the resolution of remote sensing products. Unmanned aerial vehicles (UAVs) provide an unparalleled opportunity to track the spatiotemporal variations in glacier extent at a high resolution and the changing glacier morphological features related to glacial dynamics. Five measurements were performed on the Ningchan No. 1 (NC01) glacier in the Qilian Mountains between 18 August 2017 and 13 August 2020. The glacier changes displayed in the digital orthophoto maps (DOMs) and digital surface models (DSMs) show a 7.4 ± 0.1 m a−1 retreat of the terminus of NC01, a mass balance of −1.22 ± 0.1 m w.e. a−1 from 2017 to 2020, and a maximum surface velocity of 3.2 ± 0.47 m from 18 August 2017 to 26 August 2018, which clearly show consistency with stake measurements. The surface elevation change was influenced by the combined effects of air temperature, altitude, slope, and surface velocity. This research demonstrates that UAV photogrammetry can greatly improve the temporal and spatial resolution of glaciological research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.