Fluid viscosity is one of the key factors affecting the cavitation characteristics of the Helico-axial Multiphase Pump (HAMP). In this paper, fluids with viscosities of 24.46 mm2/s, 48.48 mm2/s, 60.70 mm2/s, and 120.0 mm2/s were investigated by numerical simulation. The Ansys Fluent software was employed to conduct the simulation. The mixture multiphase flow model and the RNG k-ε turbulence model were adopted. The Singhal cavitation model was employed to consider the effects of the non-condensable gas on cavitation. An experiment was carried out to validate the numerical method. The results showed that the Net Positive Suction Head-available (NPSHA) of the pump decreased as the fluid viscosity increased. Under the critical NPSHA condition, the NPSHA decreased from 5.11 m to 3.68 m as the fluid viscosity increased from 24.46 mm2/s to 120.0 mm2/s. This suggested that the cavitation performance of the pump was deteriorated under high fluid viscosity. The impeller passage area occupied by the vapor increased when the fluid viscosity increased. Nearly half of the flow passages were occupied by cavitation bubbles when the fluid viscosity increased to 120.0 mm2/s. The vapor volume fraction, both on the suction surface and pressure surface of the blade, increased with the fluid viscosity. The vapor on the suction surface was mainly distributed in the region with the streamwise between 0 and 0.36 when the fluid viscosity was 24.46 mm2/s; while the high vapor volume fraction range increased to the streamwise of 0.42 when the fluid viscosity increased to 120.0 mm2/s. The higher vapor volume fraction corresponded with the lower pressure. It was also found that the turbulent kinetic energy, both on the suction surface and pressure surface, increased with the fluid viscosity, which was the favorite for producing more cavitation bubbles. Furthermore, the maximum velocity area was mainly concentrated in the inlet area of the impeller. The velocity distribution in the impeller was basically the same with the viscosity of 24.46 mm2/s and 48.48 mm2/s. When the viscosity further increased to 60.70 mm2/s, the maximum velocity area in the impeller was relatively large. This study provides a reference for designing the HAMP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.