In order to solve the problem of severe tension fluctuation in the winding process of strip stator, a tension control system is built with Micro-Controller Unit as controller, encoder as sensor and servo motor as actuator. Besides the employment of traditional PID feedback control, a feed-forward control link is introduced at the same time. The simulation results of PID control with and without feed-forward are compared. In addition, experiments under different working conditions are also carried out. Specifically, when the desired tension value is set at 500g along the 0.35mm enameled wire that being wound onto a strip stator at 900r/min, the tension overshoot and swing angle fluctuation are 0.88° and ±0.53° respectively. It is also found that, rather than the speed of the frame, it is the tension that significantly effects the control performance in the proposed system.
An active fully-digital tension control system with PID algorithm is proposed. Only digital signals are involved and processed throughout the closed-loop control system, which employs the micro-controller unit (MCU) dsPIC33EV256GM102 as the main controller with PID algorithm, incremental photoelectric encoder as the angular sensor and AC servo motor as the actuator. A rod-spring mechanism is indispensably constructed to convert the change of tension to the variation of rod’s swing angle. Characteristics of the controlled object are tested and analyzed, from results of which the mathematical model is theoretically deduced. The PID coefficient set is determined by Ziegler and Nichols method. Its practicability is initially validated in simulation using SIMULINK/MATLAB. The prototype is also fabricated and experimented on with ultra-fine enameled wires (0.08mm). In order to enhance the practical performance, PID coefficients are further adjusted in experiments. The results show that the proposed system performs well both in transient process and steady stage. Meanwhile, it has good anti-interference capability as well.
When the enameled wire is winded onto the poles of the motor stator or rotor, the winding quality hugely relies on the control precision of the tension. Therefore, it is necessary to control the tension of the enameled wire in winding process. A tension control system is built with single chip microcomputer, the encoder and the servo motor. The PID feedback controller and feedforward controller are combined to form feedforward feedback controller, which using feedback information of swing angle deviation and feedforward information of wire frame position to adjust the pay off speed dynamically and control tension of enameled wire further. A procedural experimental modelling method is discussed in order to identify the feedforward model. The experiment is performed, it is found that in the typical situation of setting tension 1500 g, the tension fluctuation rate of the PID controller with feedforward model is only 2%, which is far better than that of pure PID controller with a fluctuation rate of 14%. The result shows that the proposed experimental modelling method hosts the characteristics of good accuracy, universality and applicability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.