Real‐time monitoring of wound healing remains a major challenge in clinical tissue regeneration, calling the need for the development of biomaterial‐guided on‐site monitoring wound healing technology. In this study, multifunctional double colorimetry‐integrated polyacrylamide‐quaternary ammonium chitosan‐carbon quantum dots (CQDs)‐phenol red hydrogels are presented, aiming to simultaneously detect the wound pH level, reduce bacterial infection, and promote wound healing. The hybridization of CQDs and pH indicator (phenol red) with the hydrogels enables their high responsiveness, reversibility, and accurate indication of pH variability to reflect the dynamic wound status in the context of both ultraviolet and visible light. Furthermore, these visual images can be collected by smartphones and converted into on‐site wound pH signals, allowing for a real‐time evaluation of the wound dynamic conditions in a remote approach. Notably, the hydrogels exhibit excellent hemostatic and adhesive properties, maintain sufficient wound moisture, and promote wound healing via their high antibacterial activity (against Staphylococcus Aureus, and Escherichia Coli) and skin repair function. Overall, the resulting hydrogels have high potential as a novel smart and flexible wound dressing platform for theranostic skin regeneration.
The physical mechanism of multiple modes in dynamics of polyelectrolyte aqueous solutions has been drawing extensive research attention for decades. This unsolved mystery makes it highly desirable to use new techniques to conduct investigations. In this study, dual-color fluorescence cross-correlation spectroscopy is applied to study the dynamics of individual molecules of a model polyelectrolyte, sodium poly(styrene sulfonate), in aqueous solutions. Anticorrelation in the cross-correlation function is discovered as a result of motion coupling due to interchain electrostatic repulsion. After correction, the self-part of the autocorrelation function is obtained, and the calculated mean square displacement data demonstrate a two-stage diffusion processa fast one at short time lag and a slow one at long time lag. The two processes are attributed to a faster diffusion inside the cage formed by neighboring chains and a slower diffusion beyond the cage. Effects of the salt level and polyelectrolyte concentration are investigated with the comparison with the results of light scattering, showing the connection of the bimodal dynamics and the local ordering in the polyelectrolyte solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.