Cat fleas (Ctenocephalides felis) are known as the primary vector and reservoir of Rickettsia felis, the causative agent of flea‐borne spotted fever; however, field surveys regularly report molecular detection of this infectious agent from other blood‐feeding arthropods. The presence of R. felis in additional arthropods may be the result of chance consumption of an infectious bloodmeal, but isolation of viable rickettsiae circulating in the blood of suspected vertebrate reservoirs has not been demonstrated. Successful transmission of pathogens between actively blood‐feeding arthropods in the absence of a disseminated vertebrate infection has been verified, referred to as cofeeding transmission. Therefore, the principal route from systemically infected vertebrates to uninfected arthropods may not be applicable to the R. felis transmission cycle. Here, we show both intra‐ and interspecific transmission of R. felis between cofeeding arthropods on a vertebrate host. Analyses revealed that infected cat fleas transmitted R. felis to naïve cat fleas and rat fleas (Xenopsylla cheopis) via fleabite on a nonrickettsemic vertebrate host. Also, cat fleas infected by cofeeding were infectious to newly emerged uninfected cat fleas in an artificial system. Furthermore, we utilized a stochastic model to demonstrate that cofeeding is sufficient to explain the enzootic spread of R. felis amongst populations of the biological vector. Our results implicate cat fleas in the spread of R. felis amongst different vectors, and the demonstration of cofeeding transmission of R. felis through a vertebrate host represents a novel transmission paradigm for insect‐borne Rickettsia and furthers our understanding of this emerging rickettsiosis.
The geographical overlap of multiple Rickettsia and tick species coincides with the molecular detection of a variety of rickettsial agents in what may be novel tick hosts. However, little is known concerning transmissibility of rickettsial species by various tick hosts. To examine the vertical transmission potential between select tick and rickettsial species, two sympatric species of ticks, Dermacentor variabilis and Amblyomma maculatum, were exposed to five different rickettsial species, including Rickettsia rickettsii, Rickettsia parkeri, Rickettsia montanensis, Rickettsia amblyommatis, or flea-borne Rickettsia felis. Fitness-related metrics including engorgement weight, egg production index, nutrient index, and egg hatch percentage were then assessed. Subsamples of egg clutches and unfed larvae, nymphs, and adults for each cohort were assessed for transovarial and transstadial transmission of rickettsiae by qPCR. Rickettsial exposure had a minimal fitness effect in D. variabilis and transovarial transmission was observed for all groups except R. rickettsii. In contrast, rickettsial exposure negatively influenced A. maculatum fitness and transovarial transmission of rickettsiae was demonstrated only for R. amblyommatis- and R. parkeri-exposed ticks. Sustained maintenance of rickettsiae via transstadial transmission was diminished from F1 larvae to F1 adults in both tick species. The findings of this study suggest transovarial transmission specificity may not be tick species dependent, and sustained vertical transmission is not common.
Scientific analysis of the genus Rickettsia is undergoing a rapid period of change with the emergence of viable genetic tools. The development of these tools for the mutagenesis of pathogenic bacteria will permit forward genetic analysis of Rickettsia pathogenesis. Despite these advances, uncertainty still remains regarding the use of plasmids to study these bacteria in in vivo mammalian models of infection, namely, the potential for virulence changes associated with the presence of extrachromosomal DNA and nonselective persistence of plasmids in mammalian models of infection. Here, we describe the transformation of Rickettsia conorii Malish 7 with the plasmid pRam18dRGA[AmTrCh]. Transformed R. conorii stably maintains this plasmid in infected cell cultures, expresses the encoded fluorescent proteins, and exhibits growth kinetics in cell culture similar to those of nontransformed R. conorii. Using a well-established murine model of fatal Mediterranean spotted fever, we demonstrate that R. conorii(pRam18dRGA[AmTrCh]) elicits the same fatal outcomes in animals as its untransformed counterpart and, importantly, maintains the plasmid throughout infection in the absence of selective antibiotic pressure. Interestingly, plasmid-transformed R. conorii was readily observed both in endothelial cells and within circulating leukocytes. Together, our data demonstrate that the presence of an extrachromosomal DNA element in a pathogenic rickettsial species does not affect either in vitro proliferation or in vivo infectivity in models of disease and that plasmids such as pRam18dRGA[AmTrCh] are valuable tools for the further genetic manipulation of pathogenic rickettsiae.
Rickettsia parkeri is an emerging eschar-causing human pathogen in the spotted fever group of Rickettsia and is transmitted by the Gulf coast tick, Amblyomma maculatum. Tick saliva has been shown to alter both the cellular and humoral components of the innate and adaptive immune systems. However, the effect of this immunomodulation on Rickettsia transmission and pathology in an immunocompetent vertebrate host has not been fully examined. We hypothesize that, by modifying the host immune response, tick feeding enhances infection and pathology of pathogenic spotted fever group Rickettsia sp. In order to assess this interaction in vivo, a pilot study was conducted using five rhesus macaques that were divided into three groups. One group was intradermally inoculated with low passage R. parkeri (Portsmouth strain) alone (n = 2) and another group was inoculated during infestation by adult, R. parkeri-free A. maculatum (n = 2). The final macaque was infested with ticks alone (tick feeding control group). Blood, lymph node and skin biopsies were collected at several time points post-inoculation/infestation to assess pathology and quantify rickettsial DNA. As opposed to the tick-only animal, all Rickettsia-inoculated macaques developed inflammatory leukograms, elevated C-reactive protein concentrations, and elevated TH1 (interferon-γ, interleukin-15) and acute phase inflammatory cytokines (interleukin-6) post-inoculation, with greater neutrophilia and interleukin-6 concentrations in the tick plus R. parkeri group. While eschars formed at all R. parkeri inoculation sites, larger and slower healing eschars were observed in the tick feeding plus R. parkeri group. Furthermore, dissemination of R. parkeri to draining lymph nodes early in infection and increased persistence at the inoculation site were observed in the tick plus R. parkeri group. This study indicates that rhesus macaques can be used to model R. parkeri rickettsiosis, and suggests that immunomodulatory factors introduced during tick feeding may enhance the pathogenicity of spotted fever group Rickettsia.
A 6-year-old female spayed Boxer mix dog was presented with multiple cutaneous masses, one of which was determined to be a xanthoma. Fine-needle aspirates of this mass revealed large round cells that were consistent with macrophages. These macrophages had lightly basophilic cytoplasm that was filled with many clear circular spaces that varied in size. The nuclei of these cells displayed mild anisokaryosis with condensed chromatin and lacked prominent nucleoli. The cytologic interpretation was lipid-laden histiocytic inflammation most consistent with a cutaneous xanthoma, which was confirmed histologically. Mild hypertriglyceridemia and persistent moderate hypercholesterolemia were present. After ruling out other causes of hyperlipidemia, we concluded that the dog likely had idiopathic hyperlipidemia with secondary xanthoma formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.