The main focus of current research in polymeric matrix brake composites is on searching out a replacement for copper, which has been recently proved to be a hazard to human health and the environment. In this paper, rare earth lanthanum oxide was explored for the replacement of copper in composites. The mechanism of the role of lanthanum oxide in brake composites to replace copper was analyzed. Four series of polymeric matrix brake composites with various amounts of copper (15, 10, 5 and 0 wt %) and rare earth lanthanum oxide (0, 5, 10 and 15 wt %) were developed, in which the copper was gradually replaced by lanthanum oxide in the formula. These series were characterized in terms of physical, thermo-physical and mechanical properties. The results show that lanthanum oxide can be successfully used as a replacement for copper in brake composites. Brake composites with 15 wt % lanthanum oxide that are copper-free are considered optimal, where tribo-properties are considered best. Compared with the addition of copper in brake composites, lanthanum oxide is more conducive to the formation of compacted friction films and transfer films, which is beneficial to the tribological properties of the brake composites. The addition of La2O3 to the brake composites can cause the reaction between La2O3 and Al2O3 to form LaAlO3, and the reaction between Al2O3 and BaSO4 can produce Ba18Al12O36 and Al2SO4 during the friction and wear processes, which can effectively improve the tribological properties of the brake composites at elevated temperature. This research was contributive to the copper-free, metal-free and eco-friendly brake composites.
In this work, a new and effective treatment on bamboo fiber (BF) is presented, and its effect on the interfacial bonding properties of the BF/resin matrix was studied. The interfacial functionary mechanism of rare earth solution (RES) modification to improve the interfacial bonding properties between BF and the resin matrix was analyzed. The hardness and elastic modulus of the interfacial zone between BF and the resin matrix were measured using nanoindentation. Fourier-transform infrared spectroscopy (FT-IR) was used to analyze the change in the surface functional group of BF in the modification process. The surface chemical composition of BF before and after the modification was characterized by X-ray photoelectron spectroscopy (XPS). The results show that the RES modification significantly increases the hardness and elastic modulus of BF and its interfacial zone with the resin matrix. The hydroxyl concentration on the surface of RES-treated BF decreases, which reduces the hydrophilicity of BF. Rare earth ions react with oxygen in the hydroxyl group at the C2 position in the glucosylic ring of cellulose. The RES-modified BF bonds with the resin matrix to form a rare earth complex, which significantly enhances the interfacial adhesion between BF and the resin matrix.
The water-meter shell has a complex-structured thin-walled cavity, and it can cause casting defects such as shrinkage and misrun. On the basis of structural analysis of a water-meter shell, a three-dimensional model and a finite element model of the water-meter shell were constructed using the SOLIDWORKS and ProCAST software as a modeling tool and a casting numerical simulation tool, respectively. Three processes associated with the bottom gating system without a riser, a step gating system with a preliminary riser, and a step gating system with an optimum riser were successively numerically simulated. The mold-filling sequence, temperature distribution, liquid-phase distribution during solidification, and shrinkage distribution of these three processes are discussed here. The numerical simulation results indicated that optimization of the casting process and the rational assembling of the riser led to the shrinkage volumes at the inlet position, regulating sleeve, and sealing ring of the water-meter shell decreasing from 0.68 to 0 cm3, 1.39 to 0.22 cm3, and 1.32 to 0.23 cm3, respectively. A comparison between model predictions and experimental measurements indicated that the castings produced by the optimized process had good surface quality and beautiful appearance, without casting defects, demonstrating that numerical simulation can be used as an effective tool for improving casting quality.
In this study, NSSC 2120 economical duplex stainless steel was prepared and the effects of aging temperatures on its intermetallic phase morphology, tensile strength, elongation, corrosion resistance, and antimicrobial properties were investigated. The results revealed that after aging the sample at 650 °C, it exhibits better pitting corrosion resistance and higher tensile strength. Upon increasing the aging temperature up to 750 °C, the pitting corrosion resistance and tensile strength of the samples were decreased due to the precipitation of the ε-Cu phase in the matrix. Moreover, with the further increase in the aging temperature to 850 °C, oxides containing Mn and Cr (CrMn1.5O4) and sulfides (MnS) precipitated from the samples, further decreasing their pitting corrosion resistance and tensile strength. Upon aging the samples at 950 °C, no second phase was observed and the corrosion resistance was less than that of the sample after aging at 650 °C, but the tensile strength was greater than that of the sample after aging at 650 °C. Antibacterial test results revealed that the sample after aging at 750 °C exhibited a good antibacterial effect due to the precipitation of the rod-shaped ε-Cu phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.