Single-cell mRNA sequencing, which permits whole transcriptional profiling of individual cells, has been widely applied to study growth and development of tissues and tumors. Resolving cell cycle for such groups of cells is significant, but may not be adequately achieved by commonly used approaches. Here we develop a traveling salesman problem and hidden Markov model-based computational method named reCAT, to recover cell cycle along time for unsynchronized single-cell transcriptome data. We independently test reCAT for accuracy and reliability using several data sets. We find that cell cycle genes cluster into two major waves of expression, which correspond to the two well-known checkpoints, G1 and G2. Moreover, we leverage reCAT to exhibit methylation variation along the recovered cell cycle. Thus, reCAT shows the potential to elucidate diverse profiles of cell cycle, as well as other cyclic or circadian processes (e.g., in liver), on single-cell resolution.
Recent advancements in both single-cell RNA-sequencing technology and computational resources facilitate the study of cell types on global populations. Up to millions of cells can now be sequenced in one experiment; thus, accurate and efficient computational methods are needed to provide clustering and post-analysis of assigning putative and rare cell types. Here, we present a novel unsupervised deep learning clustering framework that is robust and highly scalable. To overcome the high level of noise, scAIDE first incorporates an autoencoder-imputation network with a distance-preserved embedding network (AIDE) to learn a good representation of data, and then applies a random projection hashing based k-means algorithm to accommodate the detection of rare cell types. We analyzed a 1.3 million neural cell dataset within 30 min, obtaining 64 clusters which were mapped to 19 putative cell types. In particular, we further identified three different neural stem cell developmental trajectories in these clusters. We also classified two subpopulations of malignant cells in a small glioblastoma dataset using scAIDE. We anticipate that scAIDE would provide a more in-depth understanding of cell development and diseases.
Current streamline of precision medicine uses histomorphological and molecular information to indicate individual phenotypes and genotypes to achieve optimal outcome of treatment. The knowledge of detected mutations and alteration can hardly describe molecular interaction and biological process which can finally be manifested as a disease. With molecular diagnosis revising the modalities of disease, there is a trend in precision medicine to apply multi-omic and multi-dimensional information to decode tumors, regarding heterogeneity, pathogenesis, prognosis, etc. Emerging state-of-art spatiotemporal omics provides a novel vision for in discovering clinicopathogenesis associated findings, some of which show a promising potential to be translated to facilitate clinical practice. Here, we summarize the available spatiotemporal omic technologies and algorithms, highlight the novel scientific findings and explore potential applications in the clinical scenario. Spatiotemporal omics present the ability to provide impetus to rewrite clinical pathology and to answer outstanding clinical questions. This review emphasizes the novel vision of spatiotemporal omics to refine the landscape of precision medicine in the clinic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.