Beta-4 (β4)-spectrin, encoded by the gene Sptbn4, is a cytoskeleton protein found at nodes and the axon initial segments (AIS). Sptbn4 mutations are associated with myopathy, neuropathy, and auditory deficits in humans. Related to auditory dysfunction, however, the expression and roles of β4-spectrin at axon segments along the myelinated axon in the developing auditory brain are not well explored. We found during postnatal development, β4-spectrin is critical for voltage-gated sodium channel (Nav) clustering at the heminode along the nerve terminal, but not for the formation of nodal and AIS structures in the auditory brainstem. Presynaptic terminal recordings in Sptbn4geo mice, β4-spectrin null mice, showed an elevated threshold of action potential and increased failures during action potential train at high-frequency. Sptbn4geo mice exhibited a slower central conduction and showed no startle responses, but had normal cochlear function. Taken together, the lack of β4-spectrin impairs Nav clustering at the heminode along the nerve terminal and the temporal fidelity and reliability of presynaptic spikes, leading to central auditory processing deficits during postnatal development.
Children born prematurely suffer from learning disabilities and exhibit reading, speech, and cognitive difficulties, which are associated with an auditory processing disorder. However, it is unknown whether gestational age at delivery and the unnatural auditory environment in neonatal intensive care units (NICU) collectively affect proper auditory development and neuronal circuitry in premature newborns. We morphologically characterized fetal development of the medial superior olivary nucleus (MSO), an area important for binaural hearing and sound localization, in the auditory brainstem of baboon neonates at different gestational ages. Axonal and synaptic structures and the tonotopic differentiation of ion channels in the MSO underwent profound refinements after hearing onset in the uterus. These developmental refinements of the MSO were significantly altered in preterm baboon neonates in the NICU. Thus, the maternal environment in uterus is critical for auditory nervous system development during the last trimester of pregnancy and critically affects the anatomic and functional formation of synapses and neural circuitry in the preterm newborn brain.
Children born prematurely suffer from learning disabilities and exhibit reading, speech, and cognitive difficulties, which are associated with an auditory processing disorder. However, it is unknown whether gestational age at delivery and the unnatural auditory environment in neonatal intensive care units (NICU) collectively affect proper auditory development and neuronal circuitry in premature newborns. We morphologically characterized fetal development of the medial superior olivary nucleus (MSO), an area important for binaural hearing and sound localization, in the auditory brainstem of baboon neonates at different gestational ages. Axonal and synaptic structures and the tonotopic differentiation of ion channels in the MSO underwent profound refinements after hearing onset in the uterus. In preterm baboon neonates, these developmental refinements of the MSO were significantly altered by limited maternal sound inputs from the isolated and unnatural environment in the NICU. Thus, the maternal environment, including auditory stimuli in uterus, is essential for auditory nervous system development during the last trimester of pregnancy and critically affects the anatomic and functional formation of synapses and neural circuitry in the preterm newborn brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.