Objective: The central-to-peripheral voluntary motor effort (VME) in physical practice of the paretic limb is a dominant force for driving functional neuroplasticity on motor restoration post-stroke. However, current rehabilitation robots isolated the central and peripheral involvements in the control design, resulting in limited rehabilitation effectiveness. The purpose of this study was to design a corticomuscular coherence (CMC) and electromyography (EMG)-driven (CMC-EMG-driven) system with central-and-peripheral integrated representation of VME for wrist-hand rehabilitation after stroke. Approach: The CMC-EMG-driven control was developed in a neuromuscular electrical stimulation (NMES)-robot system, i.e., CMC-EMG-driven NMES-robot system, to instruct and assist the wrist-hand extension and flexion in persons after stroke. A pilot single-group trial of 20 training sessions was conducted with the developed system to assess the feasibility for wrist-hand practice on the chronic strokes (n=16). The rehabilitation effectiveness was evaluated through clinical assessments, CMC, and EMG activation levels. Main results: The trigger success rate and laterality index (LI) of CMC were significantly increased in wrist-hand extension across training sessions (p<0.05). After the training, significant improvements in the target wrist-hand joints and suppressed compensation from the proximal shoulder-elbow joints were observed through the clinical scores and EMG activation levels (p<0.05). The central-to-peripheral VME distribution across upper extremity (UE) muscles was also significantly improved, as revealed by the CMC values (p<0.05). Significance: Precise wrist-hand rehabilitation was achieved by the developed system, presenting suppressed cortical and muscular compensation from the contralesional hemisphere and the proximal UE, and improved distribution of the central-and-peripheral VME on UE muscles.
Photoacoustic imaging (PAI) is an emerging label-free and non-invasive modality for imaging biological tissues. PAI has been implemented in different configurations, one of which is photoacoustic computed tomography (PACT) with a potential wide range of applications, including brain and breast imaging. Hemispherical Array PACT (HA-PACT) is a variation of PACT that has solved the limited detection-view problem. Here, we designed an HA-PACT system consisting of 50 single element transducers. For implementation, we initially performed a simulation study, with parameters close to those in practice, to determine the relationship between the number of transducers and the quality of the reconstructed image. We then used the greatest number of transducers possible on the hemisphere and imaged copper wire phantoms coated with a light absorbing material to evaluate the performance of the system. Several practical issues such as light illumination, arrangement of the transducers, and an image reconstruction algorithm have been comprehensively studied.
Based on the vector Debye theory, the tight focusing properties of a high-order polarized anomalous vortex (HPAV) beam are studied. The corresponding mathematical expressions of the HPAV beam are derived theoretically. We accomplish the inner and outer gear shapes of the focusing intensity where the number of the gear tooth can be modulated by polarization order. The results show that the focusing gear intensity can be flexibly modulated by initial polarization azimuth which may determine the trapping effects. Various charming focusing field patterns can be used to capture two kinds of different refractive indices particles simultaneously. The compactness of the intensity distribution can be freely adjusted by the HPAV beam topological charges and polarization order. The focal spot size, which is far beyond the Rayleigh diffraction limitation can be achieved. It may be expected to have potential applications in optical microscopy, imaging, optical telecommunication and other fields.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.