In this study, α-MnO2 and Fe2O3 nanomaterials are prepared on a carbon fiber modified with carbon nanotubes to produce the nonbinder core–shell positive (α-MnO2@CNTs/CC) and negative (Fe2O3@CNTs/CC) electrodes that can be operated in a wide voltage window in ultrafast asymmetrical flexible supercapacitors. MnO2 and Fe2O3 have attracted wide research interests as electrode materials in energy storage applications because of the abundant natural resources, high theoretical specific capacities, environmental friendliness, and low cost. The electrochemical performance of each electrode is assessed in 1 M Na2SO4 and the energy storage properties of the supercapacitors consisting of the two composite electrodes are determined in Na2SO4 and EMImBF4 electrolytes in the 2 V and 4 V windows. The 2 V supercapacitor can withstand a large scanning rate of 5000 mV S−1 without obvious changes in the cyclic voltammetry (CV) curves, besides showing a maximum energy density of 57.29 Wh kg−1 at a power density of 833.35 W kg−1. Furthermore, the supercapacitor retains 87.06% of the capacity after 20,000 galvanostatic charging and discharging (GCD) cycles. The 4 V flexible supercapacitor shows a discharging time of 1260 s and specific capacitance of 124.8 F g−1 at a current of 0.5 mA and retains 87.77% of the initial specific capacitance after 5000 GCD cycles. The mechanical robustness and practicality are demonstrated by physical bending and the powering of LED arrays. In addition, the contributions of the active materials to the capacitive properties and the underlying mechanisms are explored and discussed
MnO2 ultrathin nanosheet arrays and Fe2O3 nanoparticles are fabricated on carbon based TiN nanowires to produce binder-free and core–shell positive and negative electrodes for a flexible and ultra-fast hybrid supercapacitor.
AB2O4-type binary-transition metal oxides (BTMOs) of CuCo2O4 and MnCo2O4 were successfully prepared on ordered macroporous electrode plates (OMEP) for supercapacitors. Under the current density of 5 mA cm−2, the CuCo2O4/OMEP electrode achieved a specific capacitance of 1199 F g−1. The asymmetric supercapacitor device prepared using CuCo2O4/OMEP as the positive electrode and carbon-based materials as the negative electrode (CuCo2O4/OMEP//AC) achieved the power density of 14.58 kW kg−1 under the energy density of 11.7 Wh kg−1. After 10,000 GCD cycles, the loss capacitance of CuCo2O4/OMEP//AC is only 7.5% (the retention is 92.5%). The MnCo2O4/OMEP electrode shows the specific and area capacitance of 843 F g−1 and 5.39 F cm−2 at 5 mA cm−2. The MnCo2O4/OMEP-based supercapacitor device (MnCo2O4/OMEP//AC) has a power density of 8.33 kW kg−1 under the energy density of 11.6 Wh kg−1 and the cycle stability was 90.2% after 10,000 cycles. The excellent power density and cycle stability prove that the prepared hybrid supercapacitor fabricated under silicon process has a good prospect as the power buffer device for solar cells.
In advancing battery technologies, primary attention is paid to developing and optimizing low-cost electrode materials capable of fast reversible ion insertion and extraction with good cycling ability. Sodium-ion batteries stand out due to their inexpensive price and comparable operating principle to lithium-ion batteries. To achieve this target, various graphene-based nanocomposites fabricate stargates have been proposed to help realize the nanostructured electrode for high electrochemical performance sodium-ion batteries. In this review, the graphene-based nanocomposites were introduced according to the following main categories: graphene surface modification and doping, three-dimensional structured graphene, graphene coated on the surface of active materials, and the intercalation layer stacked graphene. Through one or more of the above strategies, graphene is compounded with active substances to prepare the nanocomposite electrode, which is applied as the anode or cathode to sodium-ion batteries. The recent research progress of graphene-based nanocomposites for SIBs is also summarized in this study based on the above categories, especially for nanocomposite fabricate methods, the structural characteristics of electrodes as well as the influence of graphene on the performance of the SIBs. In addition, the relevant mechanism is also within the scope of this discussion, such as synergistic effect of graphene with active substances, the insertion/deintercalation process of sodium ions in different kinds of nanocomposites, and electrochemical reaction mechanism in the energy storage. At the end of this study, a series of strategies are summarized to address the challenges of graphene-based nanocomposites and several critical research prospects of SIBs that provide insights for future investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.