In recent years, the hazy weather in China occurs frequently, and image dehazing has gradually become a research hotspot. To improve the dehazing effect of the hazy images, this paper has proposed a multilevel image dehazing algorithm using conditional generative adversarial networks (CGAN). The hazy image is used to generate the composed image K jointly estimated by a transmission map and atmospheric light value through a generator network, and a dehazed image is calculated through an improved atmospheric scattering model. The generator network and the joint discriminator network are subjected to adversarial training and reconstruction constraints. The experimental results show that the proposed method achieved good dehazing effect in synthetic hazy images and real hazy images, and is ahead of other advanced dehazing methods in subjective evaluation and objective evaluation. INDEX TERMS CGAN, jointly estimate, atmospheric scattering model, image dehazing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.