Clinical resistance mechanisms to CDK4/6 inhibitors in HR+ breast cancer have not been clearly defined. Whole exome sequencing of 59 tumors with CDK4/6i exposure revealed multiple candidate resistance mechanisms including RB1 loss, activating alterations in AKT1, RAS, AURKA, CCNE2, ERBB2, and FGFR2, and loss of ER expression. In vitro experiments confirmed that these alterations conferred CDK4/6i resistance. Cancer cells cultured to resistance with CDK4/6i also acquired RB1, KRAS, AURKA, or CCNE2 alterations, which conferred sensitivity to AURKA, ERK, or CHEK1 inhibition. Besides inactivation of RB1, which accounts for ~5% of resistance, seven of these mechanisms have not been previously identified as clinical mediators of resistance to CDK4/6 inhibitors in patients. Three of these-RAS activation, AKT activation, and AURKA activation-have not to our knowledge been previously demonstrated preclinically. Together, these eight mechanisms were present in 80% of resistant tumors profiled and may define therapeutic opportunities in patients. SignificanceWe identified eight distinct mechanisms of resistance to CDK4/6 inhibitors present in 80% of resistant tumors profiled. Most of these have a therapeutic strategy to overcome or prevent resistance in these tumors. Taken together, these findings have critical implications related to the potential utility of precisionbased approaches to overcome resistance in many patients with HR+ MBC..
Beyond acquired mutations in the estrogen receptor (ER), mechanisms of resistance to ER-directed therapies in ER+ breast cancer have not been clearly defined. We conducted a genome-scale functional screen spanning 10,135 genes to investigate genes whose overexpression confer resistance to selective estrogen receptor degraders. Pathway analysis of candidate resistance genes demonstrated that the FGFR, ERBB, insulin receptor, and MAPK pathways represented key modalities of resistance. In parallel, we performed whole exome sequencing in paired pre-treatment and post-resistance biopsies from 60 patients with ER+ metastatic breast cancer who had developed resistance to ERtargeted therapy. The FGFR pathway was altered via FGFR1, FGFR2, or FGF3 amplifications or FGFR2 mutations in 24 (40%) of the post-resistance biopsies. In 12 of the 24 post-resistance tumors exhibiting FGFR/FGF alterations, these alterations were not detected in the corresponding pre-treatment tumors, suggesting that they were acquired or enriched under the selective pressure of ER-directed therapy. In vitro experiments in ER+ breast cancer cells confirmed that FGFR/FGF alterations led to fulvestrant resistance as well as cross-resistance to the CDK4/6 inhibitor palbociclib. RNA sequencing of resistant cell lines treated with different drug combinations demonstrated that FGFR/FGF induced resistance through ER reprogramming and activation of the MAPK pathway. The resistance phenotypes were reversed by FGFR inhibitors, a MEK inhibitor, and/or a SHP2 inhibitor, suggesting potential treatment strategies. The detection of targetable, clonally acquired genetic alterations in the FGFR pathway in metastatic tumor biopsies highlights the value of serial tumor testing to dissect mechanisms of resistance in human breast cancer and its potential application in directing clinical management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.