Electromagnetically induced transparency-like (EIT-like) effect is a promising research area for applications of slow light, sensing and metamaterials. The EIT-like effect is generally formed by the destructive interference of bright-dark mode coupling and bright-bright mode coupling. There are seldom reports about EIT-like effect realized by the coupling of two dark modes. In this paper, we numerically and theoretically demonstrated that the EIT-like effect is achieved through dark-dark mode coupling of two waveguide resonances in a compound nanosystem with metal grating and multilayer structure. If we introduce |1〉, | 2 〉 and | 3 〉 to represent the surface plasmon polaritons (SPPs) resonance, waveguide resonance in layer 2, and waveguide resonance in layer 4, the destructive interference occurs between two pathways of | 0 〉 → | 1 〉 → | 2 〉 and | 0 〉 → | 1 〉 → | 2 〉 → | 3 〉 → | 2 〉 , where | 0 〉 is the ground state without excitation. Our work will stimulate more studies on EIT-like effect with dark-dark mode coupling in other systems.
Plasmonic nanostructures have attracted remarkable attention in label-free biosensing detection due to their unprecedented potential of high-sensitivity, miniaturization, multi-parameter, and high throughput screening. In this paper, we propose a plasmonic metamaterial absorber consisting of an asymmetrical step-shaped slit-groove array layer and an opaque gold film, separated by a silica dielectric layer, which demonstrates three-resonant perfect absorption peaks at near-infrared frequencies in an air environment. This is equivalent to three reflection dips due to the opaque gold membrane underneath the structure. Originating from the coupling and hybridization of different plasmonic modes, these three absorption peaks show different linewidths and distinctive excellent sensing performance. The surface lattice resonance (SLR) at the short wavelength range enables an ultra-narrow absorption peak of merely 2 nm and a high bulk refractive index sensitivity of 1605 nm/RIU, but occurring with comparatively low surface sensitivity. Compared to the above-mentioned narrowband SLR mode, the other two absorption peaks, respectively stemming from the coupling between slit-cavity mode and the plasmon resonance of different orders, possess relatively broad linewidths and low bulk refractive index sensitivities, yet outstanding surface sensitivities. The complementary sensing performance among these absorption peaks presents opportunities for using the designed plasmonic metamaterial absorber for multi-parameter detection and various complex application scenarios.
Electromagnetically induced transparency-like (EIT-like) effect is a very promising research area for ultra-sensitive sensing. Most sensors are either wavelength modulated or intensity modulated. In this paper, we propose a nanosystem, in which an EIT-like effect is generated for plasmonic sensors with integrated wavelength-modulated and intensity-modulated functions. The nanosystem consists of a gold (Au) grating andthree-layer insulator-metal-insulator structure. An EIT-like effect is formed by the destructive interference of surface plasmon polaritons (SPPs) on the upper and lower interfaces of the metallic layer. Using a two-oscillator coupling theory, we theoretically analyze the EIT-like effect and quantitatively reveal the damping characteristic of the two SPP modes and how they couple to each other. The presented nanosystem enriches the EIT-like implementation effect in plasmonic sensors.
Plasmonic absorbers have received considerable attention because of their promising applications in solar cells, controllable thermal emission, and infrared detection. Most proposed plasmonic absorbers are fabricated with a precisely designed surface-pattern, which require complex manufacturing process and are costly. Herein, we propose a simple plasmonic absorber composed of a triple-layer T i / S i O 2 / T i N nanosystem. The maximal absorption reaches 99.8% from 1554 nm to 1565 nm, and an average absorption of 95.3% is achieved in the long-wave near-infrared range (from 1100 nm to 2500 nm). The synergistic effect of the upper surface plasmon resonance and the Fabry–Perot resonance in the T i / S i O 2 / T i N cause the high absorption. Additionally, the effects of the incident angle, polarization state, structural materials, and geometric parameters on the absorption performance are investigated in detail. The proposed near-infrared absorber has potential application prospects in solar collectors, thermal emitters, and solar cells, owing to its high absorption, ultra-broadband bandwidth, insensitivity to incident angle and polarization state, low cost, and simple preparation process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.