Surface trap–mediated nonradiative charge recombination is a major limit to achieving high-efficiency metal-halide perovskite photovoltaics. The ionic character of perovskite lattice has enabled molecular defect passivation approaches through interaction between functional groups and defects. However, a lack of in-depth understanding of how the molecular configuration influences the passivation effectiveness is a challenge to rational molecule design. Here, the chemical environment of a functional group that is activated for defect passivation was systematically investigated with theophylline, caffeine, and theobromine. When N-H and C=O were in an optimal configuration in the molecule, hydrogen-bond formation between N-H and I (iodine) assisted the primary C=O binding with the antisite Pb (lead) defect to maximize surface-defect binding. A stabilized power conversion efficiency of 22.6% of photovoltaic device was demonstrated with theophylline treatment.
Addressing the toxicity issue in lead-based perovskite compounds by seeking other nontoxic candidate elements represents a promising direction to fabricate lead-free perovskite solar cells. Recently, Cs 2 AgBiBr 6 double perovskite achieved by replacing two Pb 2+ with Ag + and Bi 3+ in the crystal lattice has drawn much attention owing to the convenient substitution of its chemical compositions. Herein, the dependence of the optoelectronic properties and corresponding photovoltaic performance of Cs 2 AgBiBr 6 thin films on the deposition methods of vacuum sublimation and solution processing is investigated. Compared to the vacuum sublimation based one, the solution-processed Cs 2 AgBiBr 6 shows inherently higher crystallinity, narrower electronic bandgap, longer photoexcitation lifetime, and higher mobility. The excellent optoelectronic properties are attributed to the accurate composition stoichiometry of Cs 2 AgBiBr 6 films based on solution processing. These merits enable the corresponding perovskite solar cells to deliver a champion power conversion efficiency (PCE) of 2.51%, which is the highest PCE in the Cs 2 AgBiBr 6based double perovskite solar cells to date. The finding in this work provides a clear clue that a precise composition stoichiometry could guarantee the formation of high quality multicomponent perovskite films.
The band edges of metal-halide perovskites with a general chemical structure of ABX3 (A, usually a monovalent organic cation; B, a divalent cation; and X, a halide anion) are constructed mainly of the orbitals from B and X sites. Hence, the structural and compositional varieties of the inorganic B–X framework are primarily responsible for regulating their electronic properties, whereas A-site cations are thought to only help stabilize the lattice and not to directly contribute to near-edge states. We report a π-conjugation–induced extension of electronic states of A-site cations that affects perovskite frontier orbitals. The π-conjugated pyrene-containing A-site cations electronically contribute to the surface band edges and influence the carrier dynamics, with a properly tailored intercalation distance between layers of the inorganic framework. The ethylammonium pyrene increased hole mobilities, improved power conversion efficiencies relative to that of a reference perovskite, and enhanced device stability.
Halide perovskites are a strong candidate for the next generation of photovoltaics. Chemical doping of halide perovskites is an established strategy to prepare the highest efficiency and most stable perovskite-based solar cells. In this study, we unveil the doping mechanism of halide perovskites using a series of alkaline earth metals. We find that low doping levels enable the incorporation of the dopant within the perovskite lattice, whereas high doping concentrations induce surface segregation. The threshold from low to high doping regime correlates to the size of the doping element. We show that the low doping regime results in a more n-type material, while the high doping regime induces a less n-type doping character. Our work provides a comprehensive picture of the unique doping mechanism of halide perovskites, which differs from classical semiconductors. We proved the effectiveness of the low doping regime for the first time, demonstrating highly efficient methylammonium lead iodide based solar cells in both n-i-p and p-i-n architectures.
Surface effects usually become negligible on the micrometer or sub-micrometer scale due to lower surface-to-bulk ratio compared to nanomaterials. In lead halide perovskites, however, their “soft” nature renders them highly responsive to the external field, allowing for extended depth scale affected by the surface. Herein, by taking advantage of this unique feature of perovskites we demonstrate a methodology for property manipulation of perovskite thin films based on secondary grain growth, where tuning of the surface induces the internal property evolution of the entire perovskite film. While in conventional microelectronic techniques secondary grain growth generally involves harsh conditions such as high temperature and straining, it is easily triggered in a perovskite thin film by a simple surface post-treatment, producing enlarged grain sizes of up to 4 μm. The resulting photovoltaic devices exhibit significantly enhanced power conversion efficiency and operational stability over a course of 1000 h and an ambient shelf stability of over 4000 h while maintaining over 90% of its original efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.