Imatinib is an oral chemotherapeutic used primarily to treat chronic myeloid leukemia (CML) and gastrointestinal stromal tumors (GIST). The potential effects of cancer treatments on a patient’s future fertility are a major concern affecting the quality of life for cancer survivors. The effects of imatinib on future fertility are unknown. It is teratogenic. Therefore, patients are advised to stop treatment before pregnancy. Unfortunately, CML and GIST have high rates of recurrence in the absence of the drug, therefore halting imatinib during pregnancy endangers the mother. Possible long-term (post-treatment) effects of imatinib on reproduction have not been studied. We have used a mouse model to examine the effects of imatinib on the placenta and implantation after long-term imatinib exposure. We found significant changes in epigenetic markers of key imprinted genes in the placenta. There was a significant decrease in the labyrinth zone and vasculature of the placenta, which could impact fetal growth later in pregnancy. These effects on placental growth occurred even when imatinib was stopped prior to pregnancy. These results indicate potential long-term effects of imatinib on pregnancy and implantation. A prolonged wash-out period prior to pregnancy or extra monitoring for possible placental insufficiency may be advisable.
The intestinal epithelium is continuously regenerated by cell renewal of intestinal epithelial stem cells (IESCs) located in the intestinal crypts. Obesity affects this process and results in changes in the size and cellular make‐up of the tissue, but it remains unknown if there are sex differences in obesity‐induced alterations in IESC proliferation and differentiation. We fed male and female mice a 60% high‐fat diet (HFD) or a 10% low‐fat diet (LFD) for 3 months and investigated the differences in (1) the expression of markers of different intestinal epithelial cell types in vivo, and (2) lasting effects on IESC growth in vitro. We found that the growth of IESCs in vitro were enhanced in females compared with males. HFD induced similar in vivo changes and in vitro early growth of IESCs in males and females. The IESCs isolated and grown in vitro from females, though, showed an enhanced growth that was independent of obesity. To determine whether this effect was driven by sex steroid hormones, we used primary intestinal crypts isolated from male and female mice and investigated the differences in (1) the expression of steroid hormone receptors, and (2) cell proliferation in response to steroid hormones. We found that estrogen receptor α was expressed in crypts from both sexes, but estrogen had no effect on proliferation in either sex. These results suggest that obesity similarly effects IESCs in males and females, but IESCs in females have greater proliferation ability than males, but this is not driven by a direct effect of sex steroid hormones on IESCs or other crypt cells that provide essential niche support for IESCs.
Basigin is a highly glycosylated transmembrane protein that was originally identified as a product of tumor cells. Basigin is a potent inducer of matrix metalloproteinases (MMPs) and angiogenic factors such as vascular endothelial growth factor (VEGF). Basigin is also a chaperone protein for specific metabolite transporters in the plasma cell membrane such as the monocarboxylate transporters and is an important regulator of cell metabolism. Studies in reproductive model systems have demonstrated that basigin is expressed in the testis, ovary, uterus and placenta and is necessary for normal fertility in both males and females. Overexpression of basigin is associated with reproductive diseases including uterine leiomyomas and endometriosis. This review presents an overview of the literature regarding the physiological role of basigin in reproductive tissues and the mechanistic pathways involved in its actions.
Basigin (BSG) is a transmembrane glycoprotein involved in cell proliferation, angiogenesis and tissue remodeling. BSG has been shown to be essential for male and female reproduction although little is known about its role in normal uterine function. To study the potential function of BSG in the female reproductive tract, we generated mice with conditional knockout of Bsg in uterine cells using progesterone receptor-Cre and hypothesized that BSG is required for normal pregnancy in mice. Fertility study data showed that the conditional knockout mice had significantly reduced fertility compared to controls. Ovarian function of the conditional knockout mice appeared normal with no difference in the number of superovulated oocytes collected or in serum progesterone levels between the conditional knockout and the control mice. Uterine tissues collected at various times of gestation showed increased abnormalities in implantation, decidualization, placentation and parturition in the conditional knockout mice. Uterine cross sections on day 5 of pregnancy showed implantation failure and abnormal uterine epithelial differentiation in a large proportion of the conditional knockout mice. There was a compromised decidual response to artificial decidualization stimuli and decreased mRNA and protein levels for decidualization genes in the uteri of the conditional knockout mice. We also observed altered protein expression of monocarboxylate transporter 1 (MCT1), as well as impaired angiogenesis in the conditional knockout uteri compared to the controls. These results support that BSG is required for successful pregnancy through its functions in implantation and decidualization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.