Gefitinib resistance is a serious threat in the treatment of patients with non-small cell lung cancer (NSCLC). Elucidating the underlying mechanisms and developing effective therapies to overcome gefitinib resistance is urgently needed. The differentially expressed genes (DEGs) were screened from the gene expression profile GSE122005 between gefitinib-sensitive and resistant samples. GO and KEGG analyses were performed with DAVID. The protein-protein interaction (PPI) network was established to visualize DEGs and screen hub genes. The functional roles of CCL20 in lung adenocarcinoma (LUAD) were examined using gene set enrichment analysis (GSEA). Functional analysis revealed that the DEGs were mainly concentrated in inflammatory, cell chemotaxis, and PI3K signal regulation. Ten hub genes were identified based on the PPI network. The survival analysis of the hub genes showed that CCL20 had a significant effect on the prognosis of LUAD patients. GSEA analysis showed that CCL20 high expression group was mainly enriched in cytokine-related signaling pathways. In conclusion, our analysis suggests that changes in inflammation and cytokine-related signaling pathways are closely related to gefitinib resistance in patients with lung cancer. The CCL20 gene may promote the formation of gefitinib resistance, which may serve as a new biomarker for predicting gefitinib resistance in patients with lung cancer.
Background and Purpose: Alcohol use disorder (AUD) is a serious public health issue and affects the lives of numerous people. Previous studies have shown a link between nicotinic acetylcholine receptors (nAChR) and alcohol addiction. However, the role of α6β2* nAChR in alcohol addiction remains obscure, and whether α6β2* nAChR can be used as a potential drug target for alcohol withdrawal need to be studied.Methods: Zebrafish (Danio rerio) were exposed to 0.2% alcohol for 14 days followed by 7 days of repeated withdrawal and then retro-orbitally injected with α-conotoxin TxIB (a selective α6β2* nAChR antagonist). Open Field Test was applied to characterize zebrafish behavior parameters. The monoamine neurotransmitter amounts and their mRNA expression in the zebrafish brain were identified using ELISA and quantitative real-time PCR (RT-PCR). RNA-sequencing (RNA-seq) and subsequent bioinformatics analysis were employed to explore the potential network regulation of TxIB after alcohol withdrawal.Results: The max speed in the center area of the Open Field Test was significantly higher in the withdrawal group whereas TxIB injection corrected this abnormality. The amount and mRNA expression of monoamine neurotransmitters did not change significantly after alcohol withdrawal and TxIB administration. RNA sequencing of zebrafish brain indicated a total of 657 genes showed aberrant expression and among which 225 were reversed after TxIB injection. These reversed genes were significantly enriched in the calcium ion binding pathway and the gene expression profile was further validated by RT-PCR.Conclusion: Our finding suggests α-conotoxin TxIB improved behavioral abnormality induced by alcohol-withdrawal, and changed gene expression mainly in the calcium signaling pathway. Therefore, α-conotoxin TxIB is expected to become a potential therapeutic agent for alcohol withdrawal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.