Developing bifunctional electrocatalysts with high activities and long durability for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) is crucial toward the practical implementation of rechargeable metal–air batteries. Here, a 3D nanoporous graphene (np‐graphene) doped with both N and Ni single atoms/clusters is reported. The predoping of N by chemical vapor deposition (CVD) dramatically increases the Ni doping amount and stability. The resulting N and Ni codoped np‐graphene has excellent electrocatalytic activities for both the ORR and the OER in alkaline aqueous solutions. The synergetic effects of N and Ni dopants are revealed by density functional theory calculations. The free‐standing Ni,N codoped 3D np‐graphene shows great potential as an economical catalyst/electrode for metal–air batteries.
Heteronuclear
double-atom catalysts, unlike single atom catalysts,
may change the charge density of active metal sites by introducing
another metal single atom, thereby modifying the adsorption energies
of reaction intermediates and increasing the catalytic activities.
First, density functional theory calculations are used to figure out
the best combination by modeling two transition-metal atoms from Fe,
Co, and Ni onto N-doped graphene. Generally, Fe and Co sites are highly
active for the oxygen reduction reaction (ORR) and the oxygen evolution
reaction (OER), respectively. The combination of Co and Fe to form
CoFe–N–C not only further improves the Fe’s ORR
and Co’s OER activities but also greatly enhances the Co site’s
ORR and Fe site’s OER activities. Then, we synthesize the CoFe–N–C
by a two-step pyrolysis process and find that the CoFe–N–C
exhibits exceptional ORR and OER electrocatalytic activities in alkaline
media, significantly superior to Fe–N–C and Co–N–C
and even commercial catalysts.
Electrochemical
CO2 reduction is a key technology to
recycle CO2 as a renewable resource, but adsorbing CO2 on the catalyst surface is challenging. We explored the effects
of reduced graphene oxide (rGO) in Sn/rGO composites and found that
the CO2 adsorption ability of Sn/rGO was almost 4-times
higher than that of bare Sn catalysts. Density functional theory calculations
revealed that the oxidized functional groups of rGO offered adsorption
sites for CO2 toward the adjacent Sn surface and that CO2-rich conditions near the surface facilitated the production
of formate via COOH* formation while suppressing CO* formation. Scanning
electrochemical cell microscopy directly indicated that CO2 reduction was accelerated at the interface, together with the kinetic
suppression of undesirable and competitive hydrogen evolution at the
interface. Thus, the synergism of Sn/rGO ensures a substantial/rapid
supply of CO2 from the functional groups to the Sn surface,
thereby enhancing the Faradaic efficiency 1.8-times compared with
that obtained with bare Sn catalysts.
Carbon‐based metal‐free catalysts for the hydrogen evolution reaction (HER) are essential for the development of a sustainable hydrogen society. Identification of the active sites in heterogeneous catalysis is key for the rational design of low‐cost and efficient catalysts. Here, by fabricating holey graphene with chemically dopants, the atomic‐level mechanism for accelerating HER by chemical dopants is unveiled, through elemental mapping with atomistic characterizations, scanning electrochemical cell microscopy (SECCM), and density functional theory (DFT) calculations. It is found that the synergetic effects of two important factors—edge structure of graphene and nitrogen/phosphorous codoping—enhance HER activity. SECCM evidences that graphene edges with chemical dopants are electrochemically very active. Indeed, DFT calculation suggests that the pyridinic nitrogen atom could be the catalytically active sites. The HER activity is enhanced due to phosphorus dopants, because phosphorus dopants promote the charge accumulations on the catalytically active nitrogen atoms. These findings pave a path for engineering the edge structure of graphene in graphene‐based catalysts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.