The present research is aimed at the study of the failure analysis of composite panels impacted orthogonally at a high velocity and with an angle. Woven carbon-fibre panels with and without external Kevlar layers were impacted at different energy levels between 1.2 and 39.9 J. Sharp and smooth gravels with a mass from 3.1 to 6.7 g were used to investigate the effects of the mass and the contact area on the damage. Optical microscopy and thermography analyses were carried out to identify internal and surface damage. It was identified that sharp impactors created more damage on the impacted face of the panels, while the presence of a Kevlar layer increased the penetration limit and reduced the damage level in the panel at a higher energy.
This paper proposes a novel framework to characterise the morphological pattern of Barely Visible Impact Damage using machine learning. Initially, a sequence of image processing methods is introduced to extract the damage contour, which is then described by a Fourier descriptor-based filter. The uncertainty associated with the damage contour under the same impact energy level is then investigated. A variety of geometric features of the contour are extracted to develop an AI model, which effectively groups the tested 100 samples impacted by 5 different impact energy levels with an accuracy of 96%. Predictive polynomial models are finally established to link the impact energy to the three selected features. It is found that the major axis length of the damage has the best prediction performance, with an R 2 value up to 0.97. Additionally, impact damage caused by low energy exhibits higher uncertainty than that of high energy, indicating lower predictability.
With the increasingly comprehensive utilisation of Carbon Fibre-Reinforced Polymers (CFRP) in modern industry, defects detection and characterisation of these materials have become very important and draw significant research attention. During the past 10 years, Artificial Intelligence (AI) technologies have been attractive in this area due to their outstanding ability in complex data analysis tasks. Most current AI-based studies on damage characterisation in this field focus on damage segmentation and depth measurement, which also faces the bottleneck of lacking adequate experimental data for model training. This paper proposes a new framework to understand the relationship between Barely Visible Impact Damage features occurring in typical CFRP laminates to their corresponding controlled drop-test impact energy using a Deep Learning approach. A parametric study consisting of one hundred CFRP laminates with known material specification and identical geometric dimensions were subjected to drop-impact tests using five different impact energy levels. Then Pulsed Thermography was adopted to reveal the subsurface impact damage in these specimens and recorded damage patterns in temporal sequences of thermal images. A convolutional neural network was then employed to train models that aim to classify captured thermal photos into different groups according to their corresponding impact energy levels. Testing results of models trained from different time windows and lengths were evaluated, and the best classification accuracy of 99.75% was achieved. Finally, to increase the transparency of the proposed solution, a salience map is introduced to understand the learning source of the produced models.
Quantitative defect and damage reconstruction play a critical role in industrial quality management. Accurate defect characterisation in Infrared Thermography (IRT), as one of the widely used Non-Destructive Testing (NDT) techniques, always demands adequate pre-knowledge which poses a challenge to automatic decision-making in maintenance. This paper presents an automatic and accurate defect profile reconstruction method, taking advantage of deep learning Neural Networks (NN). Initially, a fast Finite Element Modelling (FEM) simulation of IRT is introduced for defective specimen simulation. Mask Region-based Convolution NN (Mask-RCNN) is proposed to detect and segment the defect using a single thermal frame. A dataset with a single-type-shape defect is tested to validate the feasibility. Then, a dataset with three mixed shapes of defect is inspected to evaluate the method’s capability on the defect profile reconstruction, where an accuracy over 90% on Intersection over Union (IoU) is achieved. The results are compared with several state-of-the-art of post-processing methods in IRT to demonstrate the superiority at detailed defect corners and edges. This research lays solid evidence that AI deep learning algorithms can be utilised to provide accurate defect profile reconstruction in thermography NDT, which will contribute to the research community in material degradation analysis and structural health monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.