The 5'-cap structure is a distinct feature of eukaryotic mRNAs and is important for RNA stability and protein translation by providing a molecular signature for the distinction of self or non-self mRNA. Eukaryotic viruses generally modify the 5'-end of their RNAs to mimic the cellular mRNA structure, thereby facilitating viral replication in host cells. However, the molecular organization and biochemical mechanisms of the viral capping apparatus typically differ from its cellular counterpart, which makes viral capping enzymes attractive targets for drug discovery. Our previous work showed that SARS coronavirus (SARS-CoV) non-structural protein 14 represents a structurally novel and unique guanine-N7-methyltransferase (N7-MTase) that is able to functionally complement yeast cellular N7-MTase. In the present study, we developed a yeast-based system for identifying and screening inhibitors against coronavirus N7-MTase using both 96-well and 384-well microtiter plates. The MTase inhibitors previously identified by in vitro biochemical assays were tested, and some, such as sinefungin, effectively suppressed N7-MTase in the yeast system. However, other compounds, such as ATA and AdoHcy, did not exert an inhibitory effect within a cellular context. These results validated the yeast assay system for inhibitor screening yet also demonstrated the difference between cell-based and in vitro biochemical assays. The yeast system was applied to the screening of 3000 natural product extracts, and three were observed to more potently inhibit the activity of coronavirus than human N7-MTase.
Our SNP-Chip data demonstrated 7/60 (12%) hepatocellular carcinoma (HCC) patients had PRL-1 copy number amplification. However, its biological functions and signaling pathways in HCC are deficient. Here, we investigated its oncogenic function and prognostic significance in HCC. PRL-1 protein levels were examined in 167 HCC samples by immunohistochemisty (IHC). The relationship of PRL-1 expression and clinicopathological features was assessed by correlation, Kaplan-Meier and Cox regression analyses. The oncogenic function of PRL-1 in HCC cells and its underlying mechanism were investigated by ectopic overexpression and knockdown model. PRL-1 levels in primary HCC and metastatic intravascular cancer thrombus were also determined by IHC. PRL-1 levels were frequently elevated in HCC tissues (81%), and elevated expression of PRL-1 was significantly associated with more aggressive phenotype and poorer prognosis in HCC patients (p<0.05). Ectopic overexpression of PRL-1 markedly enhanced HCC cells migration and invasion. Furthermore, the oncogenic functions of PRL-1 were mediated by PI3K/AKT/GSK3β signaling pathway through inhibiting E-cadherin expression. Finally, PRL-1 protein levels in metastatic cancer thrombus were higher than that in primary HCC tissues (p<0.05). These data highlight the oncogenic function of PRL-1 in HCC invasion and metastasis implicating PRL-1 as a potential prognostic marker as well as therapeutic target in HCC.
BackgroundThe pimprinine family of compounds represent very important and promising microbial metabolites for drug discovery. However, their ability in inhibiting viral infections has not yet been tested.MethodsThe antiviral activity of the pimprinine family of compounds was evaluated by determining the cytopathic effect (CPE), cell viability or plaque-forming unit (PFU), and virus yield. The mechanism of action against EV71 was determined from the virucidal activity, and effective stage and time-of-addition assays. The effects on EV71 replication were evaluated further by determining viral RNA synthesis, protein expression and cells apoptosis using the SYBR Green assays, immunofluorescence assays and flow cytometric assays, respectively.ResultsPimprinethine, WS-30581 A and WS-30581 B inhibited EV71-induced CPE, reduced progeny EV71 yields, as well as prevented EV71-induced apoptosis in human rhabdomyosarcoma (RD) cells. These compounds were found to target the early stages of the EV71 replication in cells including viral RNA replication and protein synthesis. They also showed antiviral activity against ADV-7, and were slightly active against CVB3, HSV-1 and H1N1 with a few exceptions. Pimprinine was slightly active or inactive against all the viruses tested. The mechanisms by which these compounds act against the viruses tested may be similar to that demonstrated for EV71.ConclusionThe data described herein demonstrate that the pimprinine family of compounds are inhibitors effective against the replication of EV71 and ADV-7, so they might be feasible therapeutic agents for the treatment of viral infections.
Two new 32-membered macrolide compounds, named Novonestmycins A (1) and B (2), were isolated from the soil strain Streptomyces phytohabitans HBERC-20821. Their structures were elucidated by using spectroscopic methods, including 1D, 2D-NMR and MS spectrometry. The two compounds showed strong activities against the phytophathogenic fungi Corynespora cassiicola, Rhizoctonia solani and Septoria nodorum, with MIC values of 0.78, 0.39 and 0.78 μg ml(-1), respectively. In addition, the two compounds exhibited potent inhibitory activities against four different human tumor cell lines as well as one 5-FU-resistant human hepatocellular carcinoma cell line, with IC50 of 0.15-0.48 μg ml(-1) and 0.24-1.34 μg ml(-1), respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.