Abstract. CO2 efflux at the water–air interface is an essential component of the riverine carbon cycle. However, the lack of spatially resolved CO2 emission measurements prohibits reliable estimation of the global riverine CO2 emissions. By deploying floating chambers, seasonal changes in river water CO2 partial pressure (pCO2) and CO2 emissions from the Dong River in south China were investigated. Spatial and temporal patterns of pCO2 were mainly affected by terrestrial carbon inputs (i.e., organic and inorganic carbon) and in-stream metabolism, both of which varied due to different land cover, catchment topography, and seasonality of precipitation and temperature. Temperature-normalized gas transfer velocity (k600) in small rivers was 8.29 ± 11.29 and 4.90 ± 3.82 m d−1 for the wet season and dry season, respectively, which was nearly 70 % higher than that of large rivers (3.90 ± 5.55 m d−1 during the wet season and 2.25 ± 1.61 m d−1 during the dry season). A significant correlation was observed between k600 and flow velocity but not wind speed regardless of river size. Most of the surveyed rivers were a net CO2 source while exhibiting substantial seasonal variations. The mean CO2 flux was 300.1 and 264.2 mmol m−2 d−1 during the wet season for large and small rivers, respectively, 2-fold larger than that during the dry season. However, no significant difference in CO2 flux was observed between small and large rivers. The absence of commonly observed higher CO2 fluxes in small rivers could be associated with the depletion effect caused by abundant and consistent precipitation in this subtropical monsoon catchment.
In this study, laboratory rainfall simulation in an extensive area was used to study the infiltration, and interception and storage from surface runoff in points with different stone cover percentages (0, 10, 20 and 30%) and slopes (5°, 10° and 20°). The experimental results of this study showed that the interrelationships among the slope, stone cover percentage, groundwater level, surface runoff amount, and interception and storage of the ponds were varied and irregular. No systematic patterns were detected for the change in the groundwater level, surface runoff amount, and interception and storage of the ponds with different stone cover percentages at different slopes and no threshold values were apparent. For a 5° slope, if the stone cover percentage was increased, the amount of surface runoff was reduced, the infiltration and the groundwater level experienced no significant change, and the interception and storage of the ponds increased. For a 10° slope, if the stone cover percentage was increased, the amount of surface runoff increased, the infiltration decreased, the groundwater level experienced no significant change or decreased slightly at certain points, and the interception and storage of the ponds increased. For a 20° slope, if the stone cover percentage was increased, the amount of runoff increased, the infiltration decreased, the groundwater level experienced no significant change or decreased slightly at certain points, and the interception and storage of the ponds increased. With or without stone cover, when the hydraulic conductivity of the top material is close to that of fine sand or laterite, an increase in the slope gradient decreased the amount of surface runoff and increased the storage amount of the ponds. As for the stone distribution, an interlaced style showed better performance in the interception and storage of ponds than that of a regular style. There was no significant change in the groundwater level. Copyright © 2000 John Wiley & Sons, Ltd.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.