Severe acute pancreatitis (SAP) starts as a local inflammation of pancreatic tissue that induces the development of multiple extra-pancreatic organ dysfunction; however, the underlying mechanisms remain unclear. The present study was designed to evaluate the effect of dexamethasone (DXM) on pancreatic damage and to investigate the role of high-mobility group box-1 (HMGB1) and nuclear factor-κB (NF-κBp65) in the development of SAP in animal and cell models. For the in vivo experiment, 35 Sprague-Dawley rats were randomly assigned to three groups: The sham-operation control group, the SAP group and the DXM treatment group. Histological analysis revealed that, when DXM was infused into SAP rats, edema formation and structural alterations with necrosis were reduced, and the number of apoptotic cells was markedly reduced. In addition, compared with the SAP group, the expression level of HMGB1 was significantly decreased in the nucleus and the expression level of NF-κBp65 was significantly decreased in the cytoplasm from rats treated with DXM. In vitro, DXM was able to suppress the apoptosis and cell death induced by caerulein (CAE), and DXM could suppress the expression of NF-κBp65 and HMGB1 induced by CAE, as demonstrated by western blotting and immunofluorescence analysis. Therefore, these results provide an experimental basis for investigating the underlying therapeutic mechanisms of DXM treatment for SAP.
Objectives
MicroRNAs have been considered to be closely related with the development of severe acute pancreatitis (SAP), and microRNA-375 (miR-375) was believed to be a marker of SAP. We aim to investigate the role of miR-375 in regulating SP.
Methods
Cerulein and lipopolysaccharide were used to establish the models of SAP. AR42J cell line was chosen for study in vitro. Flow cytometry was applied for assessing apoptosis. The contents of inflammatory factors were detected with related enzyme-linked immunosorbent assay and quantitative real-time polymerase chain reaction assays. Hematoxylin and eosin staining was applied to observe the pathological changes of pancreatic tissues. Immunohistochemistry analysis was conducted for investigating the expression of light chain 3.
Results
The level of miR-375 in pancreatitis tissues and cell lines was upregulated. Overexpression of miR-375 promoted inflammation and the apoptosis of acinar cells through inhibiting autophagy. The binding site between miR-375 and ATG7 was identified, and miR-375 could directly regulate the ATG7. microRNA-375 suppressed autophagy and promoted inflammation and the apoptosis of acinar cells via targeting ATG7.
Conclusions
We proved that miR-375 could inhibit autophagy and promote inflammation and the apoptosis of acinar cells through regulating ATG7. This study first proves that miR-375 modulates the development of SAP through targeting ATG7.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.