Is there a common structural and functional cortical architecture that can be quantitatively encoded and precisely reproduced across individuals and populations? This question is still largely unanswered due to the vast complexity, variability, and nonlinearity of the cerebral cortex. Here, we hypothesize that the common cortical architecture can be effectively represented by group-wise consistent structural fiber connections and take a novel data-driven approach to explore the cortical architecture. We report a dense and consistent map of 358 cortical landmarks, named Dense Individualized and Common Connectivity-based Cortical Landmarks (DICCCOLs). Each DICCCOL is defined by group-wise consistent white-matter fiber connection patterns derived from diffusion tensor imaging (DTI) data. Our results have shown that these 358 landmarks are remarkably reproducible over more than one hundred human brains and possess accurate intrinsically established structural and functional cross-subject correspondences validated by large-scale functional magnetic resonance imaging data. In particular, these 358 cortical landmarks can be accurately and efficiently predicted in a new single brain with DTI data. Thus, this set of 358 DICCCOL landmarks comprehensively encodes the common structural and functional cortical architectures, providing opportunities for many applications in brain science including mapping human brain connectomes, as demonstrated in this work.
Major depressive disorder (MDD) is common and disabling, but its neuropathophysiology remains unclear. Most studies of functional brain networks in MDD have had limited statistical power and data analysis approaches have varied widely. The REST-meta-MDD Project of resting-state fMRI (R-fMRI) addresses these issues. Twenty-five research groups in China established the REST-meta-MDD Consortium by contributing R-fMRI data from 1,300 patients with MDD and 1,128 normal controls (NCs). Data were preprocessed locally with a standardized protocol before aggregated group analyses. We focused on functional connectivity (FC) within the default mode network (DMN), frequently reported to be increased in MDD. Instead, we found decreased DMN FC when we compared 848 patients with MDD to 794 NCs from 17 sites after data exclusion. We found FC reduction only in recurrent MDD, not in first-episode drug-naïve MDD. Decreased DMN FC was associated with medication usage but not with MDD duration. DMN FC was also positively related to symptom severity but only in recurrent MDD. Exploratory analyses also revealed alterations in FC of visual, sensory-motor, and dorsal attention networks in MDD. We confirmed the key role of DMN in MDD but found reduced rather than increased FC within the DMN. Future studies should test whether decreased DMN FC mediates response to treatment. All R-fMRI indices of data contributed by the REST-meta-MDD consortium are being shared publicly via the R-fMRI Maps Project.
Efforts to identify meaningful functional imaging-based biomarkers are limited by the ability to reliably characterize inter-individual differences in human brain function. Although a growing number of connectomics-based measures are reported to have moderate to high test-retest reliability, the variability in data acquisition, experimental designs, and analytic methods precludes the ability to generalize results. The Consortium for Reliability and Reproducibility (CoRR) is working to address this challenge and establish test-retest reliability as a minimum standard for methods development in functional connectomics. Specifically, CoRR has aggregated 1,629 typical individuals’ resting state fMRI (rfMRI) data (5,093 rfMRI scans) from 18 international sites, and is openly sharing them via the International Data-sharing Neuroimaging Initiative (INDI). To allow researchers to generate various estimates of reliability and reproducibility, a variety of data acquisition procedures and experimental designs are included. Similarly, to enable users to assess the impact of commonly encountered artifacts (for example, motion) on characterizations of inter-individual variation, datasets of varying quality are included.
Catechol estrogens and catecholamines are metabolized to quinones, and the metabolite catechol (1,2-dihydroxybenzene) of the leukemogenic benzene can also be oxidized to its quinone. We report here that quinones obtained by enzymatic oxidation of catechol and dopamine with horseradish peroxidase, tyrosinase or phenobarbital-induced rat liver microsomes react with DNA by 1,4-Michael addition to form predominantly depurinating adducts at the N-7 of guanine and the N-3 of adenine. These adducts are analogous to the ones formed with DNA by enzymatically oxidized 4-catechol estrogens (Cavalieri,E.L., et al. (1997) PROC: Natl Acad. Sci., 94, 10937). The adducts were identified by comparison with standard adducts synthesized by reaction of catechol quinone or dopamine quinone with deoxyguanosine or adenine. We hypothesize that mutations induced by apurinic sites, generated by the depurinating adducts, may initiate cancer by benzene and estrogens, and some neurodegenerative diseases (e.g. Parkinson's disease) by dopamine. These data suggest that there is a unifying molecular mechanism, namely, formation of specific depurinating DNA adducts at the N-7 of guanine and N-3 of adenine, that could initiate many cancers and neurodegenerative diseases.
Since the mid of 1990s, functional connectivity study using fMRI (fcMRI) has drawn increasing attention of neuroscientists and computer scientists, since it opens a new window to explore functional network of human brain with relatively high resolution. A variety of methods for fcMRI study have been proposed. This paper intends to provide a technical review on computational methodologies developed for fcMRI analysis. From our perspective, these computational methods are classified into two general categories: model-driven methods and data-driven methods. Datadriven methods are a large family, and thus are further sub-classified into decomposition-based methods and clustering analysis methods. For each type of methods, principles, main contributors, and their advantages and drawbacks are discussed. Finally, potential applications of fcMRI are overviewed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.