Distributed Stream Processing (DSP) systems enable processing large streams of continuous data to produce results in near to real time. They are an essential part of many data-intensive applications and analytics platforms. The rate at which events arrive at DSP systems can vary considerably over time, which may be due to trends, cyclic, and seasonal patterns within the data streams. A priori knowledge of incoming workloads enables proactive approaches to resource management and optimization tasks such as dynamic scaling, live migration of resources, and the tuning of configuration parameters during run-times, thus leading to a potentially better Quality of Service.In this paper we conduct a comprehensive evaluation of different load prediction techniques for DSP jobs. We identify three use-cases and formulate requirements for making load predictions specific to DSP jobs. Automatically optimized classical and Deep Learning methods are being evaluated on nine different datasets from typical DSP domains, i.e. the IoT, Web 2.0, and cluster monitoring. We compare model performance with respect to overall accuracy and training duration. Our results show that the Deep Learning methods provide the most accurate load predictions for the majority of the evaluated datasets.
Cardiovascular diseases and heart failures in particular are the main cause of non-communicable disease mortality in the world. Constant patient monitoring enables better medical treatment as it allows practitioners to react on time and provide the appropriate treatment. Telemedicine can provide constant remote monitoring so patients can stay in their homes, only requiring medical sensing equipment and network connections. A limiting factor for telemedical centers is the amount of patients that can be monitored simultaneously. We aim to increase this amount by implementing a decision support system. This paper investigates a machine learning model to estimate a risk score based on patient vital parameters that allows sorting all cases every day to help practitioners focus their limited capacities on the most severe cases. The model we propose reaches an AUCROC of 0.84, whereas the baseline rule-based model reaches an AUCROC of 0.73. Our results indicate that the usage of deep learning to improve the efficiency of telemedical centers is feasible. This way more patients could benefit from better health-care through remote monitoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.