In this paper, an ultra-wideband, wide angle and polarization-insensitive metasurface is designed, fabricated, and characterized for suppressing the specular electromagnetic wave reflection or backward radar cross section (RCS). Square ring structure is chosen as the basic meta-atoms. A new physical mechanism based on size adjustment of the basic meta-atoms is proposed for ultra-wideband manipulation of electromagnetic (EM) waves. Based on hybrid array pattern synthesis (APS) and particle swarm optimization (PSO) algorithm, the selection and distribution of the basic meta-atoms are optimized simultaneously to obtain the ultra-wideband diffusion scattering patterns. The metasurface can achieve an excellent RCS reduction in an ultra-wide frequency range under x- and y-polarized normal incidences. The new proposed mechanism greatly extends the bandwidth of RCS reduction. The simulation and experiment results show the metasurface can achieve ultra-wideband and polarization-insensitive specular reflection reduction for both normal and wide-angle incidences. The proposed methodology opens up a new route for realizing ultra-wideband diffusion scattering of EM wave, which is important for stealth and other microwave applications in the future.
In this paper, a metasurface (MS) is designed based on the hybrid array pattern synthesis and particle swarm optimization method for wideband monostatic and multistatic radar stealth. The non-absorptive MS is composed of two kinds of electronic band gap structures with the reflection phase difference of 180° (±37°) over a wide frequency range. Far field scattering pattern of the MS can be quickly and accurately synthetized by the method of moments and array pattern synthesis. A new strategy is proposed for realizing the diffusion reflection of electromagnetic waves by redirecting electromagnetic energies to more directions through optimizing the reflected phase arrangement for the MS by hybrid array pattern synthesis and particle swarm optimization algorithm. Due to the non-uniform distributions of phase gradient between neighboring lattices, numerous scattering lobes are produced in the upper half-space, leading to a great reduction of bistatic radar cross section (RCS). The −10 dB RCS reduction bandwidth of 80.2% is achieved for both monostatic and bistatic at normal incidence. The specular reflection and bistatic scattering for oblique incidence with TE and TM polarizations are also considered in detail. The measured results are in good agreement with the corresponding simulations.
The numerical aperture (NA) of a lens determines its focusing resolution capability and the maximum light collection or emission angle. In this Letter, an ultrathin high NA metalens operating in the microwave band is designed and demonstrated both numerically and experimentally. The proposed element is constructed by a multi-layer complementary split ring resonator, which can cover full
2
π
phase shift simultaneously with high transmission magnitude by varying its radius gradually. The numerical and experimental results reveal that the designed ultrathin (thickness is only
∼
0.23
λ
) metalens can focus normal incident microwave efficiently to a spot of full width at half-maximum (FWHM) as small as
∼
0.54
λ
with a corresponding high NA exceeding 0.9. Besides, the high NA metalens also possesses a relatively large focusing efficiency with a peak 48% within considered broad frequency range from 7.5 to 10 GHz. The performances of the presented metalens can be comparable or even superior to nowadays high-quality optical metalenses and represent an important step to develop a high-performance metalens in low spectrum. Besides, it can greatly facilitate the development of some novel miniaturized devices like a high-gain low profile scanning antenna, an ultra-compact retroreflector, and cloaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.