We report on a multi-petawatt 3-cascaded all-optical parametric chirped-pulse amplification laser facility. The experimental results demonstrate that the maximum energy after the final amplifier and after the compressor is 168.7 J and 91.1 J, respectively. The pulse width (FWHM) is 18.6 fs in full width at half maximum after optimization of pulse compression. Therefore, 4.9 PW peak power has been achieved for the laser facility. To the best of our knowledge, this is the highest peak power reported so far for an all-optical parametric chirped-pulse amplification facility, and a compressed pulse shorter than 20 fs is achieved in a PW-class laser facility for the first time.
A new simple mechanism due to cold electron flow to produce strong magnetic field is proposed. A 600-T strong magnetic field is generated in the free space at the laser intensity of 5.7 × 10 15 ⋅ −2 . Theoretical analysis indicates that the magnetic field strength is proportional to laser intensity. Such a strong magnetic field offers a new experimental test bed to study laser-plasma physics, in particular, fast-ignition laser fusion research and laboratory astrophysics.
We report a high-intensity laser facility named Xingguang-III that generates femtosecond, picosecond, and nanosecond beams with three wavelengths, i.e. 800 nm, 1053 nm, and 527 nm, respectively. To the best of our knowledge, the laser facility is the first one which produces three beams with different pulse widths and wavelengths. An optical synchronization technique, combining super continuum generation and femtosecond optical parametric amplification, was developed to ensure three beams are from the same source to achieve precise synchronization. The femtosecond beam is a double chirped-pulseamplification Ti:sapphire laser which applies cross-polarized wave generation to improve the temporal contrast. The picosecond/nanosecond beams utilize the optical parametric amplification + Nd:glass mixed amplification scheme. The output energy and pulse width of the three beams are 20.1 J/26.8 fs, 370.2 J/0.48 ps (shortest), and 575.4 J/1.0 ns, respectively. The smallest synchronization time (peak-to-valley) and the shot-to-shot timing jitter (peak-topeak) of less than 1.32 ps have been achieved for the femtosecond and picosecond beams.
Recently generation of strong magnetic (B) fields has been demonstrated in capacitor coils heated by high power laser pulses [S. Fujioka et al., Sci. Rep. 3, 1170 (2013)]. This paper will present a direct measurement of B field generated with an open-ended coil target driven by a nanosecond laser pulse using ultrafast proton radiography. The radiographs are analyzed with particle-tracing simulations. The B field at the coil center is inferred to be ∼50 T at an irradiance of ∼5 × 1014 W·cm−2. The B field generation is attributed to the background cold electron flow pointing to the laser focal spot, where a target potential is induced due to the escape of energetic electrons.
An ultraintense femtosecond laser pulse was used, for the first time, to produce a strong magnetic field with controlled shapes by interactions with a capacitor-coil target with high efficiency. The temporal evolution of the strong magnetic field was obtained by the time-gated proton radiography method. A comparison of high-resolution radiographic images of proton deflection and particle-track simulations indicates a peak magnetic field of ∼20 T. The energy conversion efficiency from the ultraintense laser pulse to the magnetic field is as high as ∼10%. A simple model of the ultraintense laser-driven capacitor-coil target gives a relationship between the magnetic field strength and the electron temperature produced by the laser. Our results indicate that magnetic fields of tens of tesla could be stably produced by most of the existing ultraintense laser facilities. It potentially opens new frontiers in basic physics which require strong magnetic field environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.