Using 2 highly sensitive metabolomic techniques, we report distinct serum profile change of a wide range of metabolites from healthy persons to type 2 diabetes mellitus. Apart from glucose, IFG and diabetes mellitus are characterized by abnormalities in amino acid, fatty acids, glycerophospholipids, and sphingomyelin metabolism. These early broad-spectrum metabolic changes emphasize the complex abnormalities present in a disease defined mainly by elevated blood glucose levels.
Higher LRG1 is a significant predictor for arterial stiffness, endothelial function, and PAD. The pathobiological basis and the temporal relationships of these associations need to be explored by further mechanistic and prospective studies to understand the clinical significance of these findings.
Statins are potent cholesterol-lowering drugs and are generally well tolerated. Hepatotoxicity is a rare but serious adverse effect of statins; however, its mechanisms are not clear. Coenzyme Q10 deficiency has been suggested, and supplementation of reduced coenzyme Q10 (ubiquinol) has been shown to have hepatoprotective effects. MicroRNAs (miRNAs) are small nucleotides that have been shown to be up-regulated in drug-induced liver injury. We hypothesized that circulating miRNAs may be differentially regulated after simvastatin treatment and by comparing with that of simvastatin and ubiquinol supplementation could potentially uncover signatory miRNA profile for simvastatin-induced liver injury. In this double-blind, prospective, randomized-controlled trial, miRNA profiles and liver enzymes were compared between simvastatin-treated patients, with and without ubiquinol supplementation, over 12 weeks compared to baseline. miRNA expression was further validated in HepG2 liver cell lines by real-time PCR. Changes in miR-192, miR-146a, miR-148a, miR-15a, and miR-21 were positively correlated (p<0.05) with alanine aminotransferase in simvastatin-only treated patients. In ubiquinol supplementation group, alanine aminotransferase and alkaline phosphatase were significantly down-regulated after 12 weeks and changes in miR-15a, miR-21 and miR-33a were negatively correlated with alkaline phosphatase (p < 0.05). Bioinformatics analyses predicted that miRNA regulation in simvastatin group was related to reduce proliferation and adenosine triphosphate-binding cassette transporters. Ubiquinol supplementation additionally regulated miRNAs that inhibit apoptotic and inflammatory pathways, suggesting potential hepatoprotective effects. Our results suggest that 20 mg/day of simvastatin does not have significant risk of hepatotoxicity and ubiquinol supplementation may, at the miRNA level, provide potential beneficial changes to reduce the effects of coenzyme Q10 deficiency in the liver.
Serum pigment epithelium-derived factor is positively associated with homeostasis model assessment-insulin resistance and negatively associated with HDL. Further studies are needed to understand the mechanism of low HDL and raised pigment epithelium-derived factor and to determine if they are causally related to the pathobiology of insulin resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.