The ever-increasing computation complexity of fast-growing Deep Neural Networks (DNNs) has requested new computing paradigms to overcome the memory wall in conventional Von Neumann computing architectures. The emerging Computing-In-Memory (CIM) architecture has been a promising candidate to accelerate neural network computing. However, the data movement between CIM arrays may still dominate the total power consumption in conventional designs. This paper proposes a flexible CIM processor architecture named Domino to enable stream computing and local data access to significantly reduce the data movement energy. Meanwhile, Domino employs tailored distributed instruction scheduling within Network-on-Chip (NoC) to implement inter-memory-computing and attain mapping flexibility. The evaluation with prevailing CNN models shows that Domino achieves 1.15-to-9.49× power efficiency over several stateof-the-art CIM accelerators and improves the throughput by 1.57-to-12.96×.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.