The human ether-à-go-go related gene (hERG) potassium channel is an obligatory anti-target for drug development on account of its essential role in cardiac repolarization and its close association with arrhythmia. Diverse drugs have been removed from the market owing to their inhibitory activity on the hERG channel and their contribution to acquired long QT syndrome (LQTS). Moreover, mutations that cause hERG channel dysfunction may induce congenital LQTS. Recently, an increasing number of biochemical and molecular mechanisms underlying hERG-associated LQTS have been reported. In fact, numerous potential biochemical and molecular rescue strategies are hidden within the biogenesis and regulating network. So far, rescue strategies of hERG channel dysfunction and LQTS mainly include activators, blockers, and molecules that interfere with specific links and other mechanisms. The aim of this review is to discuss the rescue strategies based on hERG channel toxicology from the biochemical and molecular perspectives.
Aims: The human ether-a-go-go-related gene (hERG) encodes the α subunit of the IKr, which plays an essential role in repolarization of action potentials. hERG channels are targeted by various pro-arrhythmic drugs. Berberine (BBR) was previously found to acutely inhibit hERG currents and prolong action potential duration. The present study aimed to determine long-term effects of BBR on the expression of 135kDa/155kDa hERG and the mechanism. Methods and Results: hERG expression was assessed by western blot. Mature hERG (155 kDa) was reduced, whereas ER-located hERG (135 kDa) was increased by BBR. This indicated that hERG was restricted to the ER and that BBR disrupted channel trafficking. To determine the mechanism of trafficking inhibition, we performed western blot and immunoprecipitation to test folding of hERG by assessing interaction between hERG and Hsp90/Hsp70. Both the expression of Hsp90 and its interaction with hERG were strongly decreased by BBR. These data suggest that BBR reduces channel folding to induce trafficking inhibition. Western blot and confocal imaging were used to further detect whether the unfolded protein response (UPR) was activated. Active ATF6, a marker of the UPR, was activated by BBR. Calnexin and calreticulin, chaperones that are activated by ATF6 to assist channel folding, were also elevated and increasingly colocalized with hERG. These data also demonstrate that the UPR was activated. Immunoprecipitation and western blot assays were performed after BBR treatment to examine ubiquitination and degradation, common endpoints of the UPR. We found that the ER-restricted hERG was ubiquitinized and degraded in the lysosomes and proteasomes. Conclusion: Our study demonstrates that BBR induces hERG channel deficiency by inhibiting channel trafficking after incubation for 24h. Trafficking inhibition activated the UPR, and the ER-restricted hERG was ubiquitinized and degraded in lysosomes and proteasomes.
In land plants, water vapor diffuses into the air through the stomata. The loss of water vapor creates a water potential difference between the leaf and the soil, which draws the water upward. Quantitatively, the water potential difference is 1-2 MPa which can support a water column of 100-200 m. Here we present the design and operation of a biomimetic micropump. The micropump is mainly composed of a 48-lm thick metal screen plate with a group of 102-lm diameter micropores and an agarose gel sheet with nanopores of 100 nm diameter. The micropores in the screen plate imitate the stomata to regulate the flow rate of the micropump. The agarose gel sheet is used to imitate the mesophyll cells around the stomata. The lost of water from the nanopores in the gel sheet can generate a water potential difference (more than 30 kPa) which can drive solution flow in a microfluidic chip. Results have shown that a precise flow rate of 4-8 nl/min can be obtained by using this micropump, and its ultra-high flow rate is 113-126 nl/min. The advantages of this biomimetic micropump include adjustable flow rate, simple structure and low fabrication cost. It can be used as a ''plug and play'' fluid-driven unit in microfluidic chips without any external power sources or equipments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.