In this paper, a multipoint boundary value problem for systems of integro-differential equations with involution has been studied. To solve the studied problem, the parameterization method is used. Based on the parametrization method, the studied problem is decomposed into two parts, i.e., into the Cauchy problem and a system of linear equations. Necessary and sufficient conditions for the unique solvability of the studied problem are determined.
In the paper we study properties of some integro-differential operators of fractional order. As an application of the properties of these operators for Poisson equation we examine questions on solvability of a fractional analogue of the Neumann problem and analogues of periodic boundary value problems for circular domains. The exact conditions for solvability of these problems are found.
The methods for constructing solutions to integro-differential equations of the Volterra type are considered. The equations are related to fractional conformable derivatives. Explicit solutions of homogeneous and inhomogeneous equations are constructed, and a Cauchy-type problem is studied. It should be noted that the considered method is based on the construction of normalized systems of functions with respect to a differential operator of fractional order.
This article is devoted to the study of the solvability of some boundary value problems with involution.In the space Rn, the map Sx=x is introduced. Using this mapping, a nonlocal analogue of the Laplace operator is introduced, as well as a boundary operator with an inclined derivative. Boundary-value problems are studied that generalize the well-known problem with an inclined derivative. Theorems on the existence and uniqueness of the solution of the problems under study are proved. In the Helder class, the smoothness of the solution is also studied. Using well-known statements about solutions of a boundary value problem with an inclined derivative for the classical Poisson equation, exact orders of smoothness of a solution to the problem under study are found.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.