Abstract:The importance of lakes and reservoirs leads to the high need for monitoring lake water quality both at local and global scales. The aim of the study was to test suitability of Sentinel-2 Multispectral Imager's (MSI) data for mapping different lake water quality parameters. In situ data of chlorophyll a (Chl a), water color, colored dissolved organic matter (CDOM) and dissolved organic carbon (DOC) from nine small and two large lakes were compared with band ratio algorithms derived from Sentinel-2 Level-1C and atmospherically corrected (Sen2cor) Level-2A images. The height of the 705 nm peak was used for estimating Chl a. The suitability of the commonly used green to red band ratio was tested for estimating the CDOM, DOC and water color. Concurrent reflectance measurements were not available. Therefore, we were not able to validate the performance of Sen2cor atmospheric correction available in the Sentinel-2 Toolbox. The shape and magnitude of water reflectance were consistent with our field measurements from previous years. However, the atmospheric correction reduced the correlation between the band ratio algorithms and water quality parameters indicating the need in better atmospheric correction. We were able to show that there is good correlation between band ratio algorithms calculated from Sentinel-2 MSI data and lake water parameters like Chl a (R 2 = 0.83), CDOM (R 2 = 0.72) and DOC (R 2 = 0.92) concentrations as well as water color (R 2 = 0.52). The in situ dataset was limited in number, but covered a reasonably wide range of optical water properties. These preliminary results allow us to assume that Sentinel-2 will be a valuable tool for lake monitoring and research, especially taking into account that the data will be available routinely for many years, the imagery will be frequent, and free of charge.
Many lakes in boreal and arctic regions have high concentrations of CDOM (coloured dissolved organic matter). Remote sensing of such lakes is complicated due to very low water leaving signals. There are extreme (black) lakes where the water reflectance values are negligible in almost entire visible part of spectrum (400-700 nm) due to the absorption by CDOM. In these lakes, the only water-leaving signal detectable by remote sensing sensors occurs as two peaks-near 710 nm and 810 nm. The first peak has been widely used in remote sensing of eutrophic waters for more than two decades. We show on the example of field radiometry data collected in Estonian and Swedish lakes that the height of the 810 nm peak can also be used in retrieving water constituents from remote sensing data. This is important especially in black lakes where the height of the 710 nm peak is still affected by CDOM. We have shown that the 810 nm peak can be used also in remote sensing of a wide variety of lakes. The 810 nm peak is caused by combined effect of slight decrease in absorption by water molecules and backscattering from particulate material in the water. Phytoplankton was the dominant particulate material in most of the studied lakes. Therefore, the height of the 810 peak was in good correlation with all proxies of phytoplankton biomass-chlorophyll-a (R 2 = 0.77), total suspended matter (R 2 = 0.70), and suspended particulate organic matter (R 2 = 0.68). There was no correlation between the peak height and the suspended particulate inorganic matter. Satellite sensors with sufficient spatial and radiometric resolution for mapping lake water quality (Landsat 8 OLI and Sentinel-2 MSI) were launched recently. In order to test whether these satellites can capture the 810 nm peak we simulated the spectral performance of these two satellites from field radiometry data. Actual satellite imagery from a black lake was also used to study whether these sensors can detect the peak despite their band configuration. Sentinel 2 MSI has a nearly perfectly positioned band at 705 nm to characterize the 700-720 nm peak. We found that the MSI 783 nm band can be used to detect the 810 nm peak despite the location of this band is not in perfect to capture the peak.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.